

www.FirstRanker.com

www.FirstRanker.com AW-1773

B.Sc. Part-III (Semester-VI) Examination STATISTICS

P. Sc. Part-III (Semester VI)	Marks: 80
STATISTICS	[Maximum Marks 2
(c) Linear (ii) A necessary and sufficient condition	of feasible region. algorithm. algorithm. algorithm. 2 instraints are always (b) Exponential (d) None of the above for existence of a feasible solution to the
transportation problem is (a) $\sum_{i} a_{i} > \sum_{j} b_{j}$ (c) $\sum_{i} a_{i} < \sum_{j} b_{j}$	(b) $\sum_{i} a_{i} = \sum_{j} b_{j}$ (d) $\sum_{i} a_{i} \neq \sum_{j} b_{j}$
(iii) The principle of is not used	in CRD.
(iii) The principle of is a control (iv) In 2 ³ factorial experiment the total number.	(d) None of the above
	(b) 6
(a) 8 (c) 4 (C) Answer in ONE sentence: (i) What is saddle point? (ii) Define contrast.	(d) 12 4
(iii) What do you mean by feasible sol	lution ?
(iv) What is mean sum of squares ?	
and a standard form of LPP	4
(A) State the standard form of Lett. (B) Give the Simplex algorithm to solve L	.PP. 4

(C) Solve the given LPP by graphica

Max.
$$Z = 3x_1 + 2x_2$$

4

subject to :

$$X_1 - X_2 \le 1$$

$$X_1 + X_2 \ge 3$$

$$X_1, X_2 \ge 0$$

OR

3. (P) Explain LPP in general.

(Q) Define:

4

(i) Feasible solution

4

- (ii) Net evaluations.
- (R) Solve the given LPP graphically :

Max.
$$Z = x_1 + 2x_2$$

4

subject to:

$$X_1 + X_2 \le 5$$

$$x, \leq 4$$

$$X_1, X_2 \ge 0$$

- 4. (A) What do you mean by transportation problem? Give its mathematical formation.
 - (B) Explain matrix minima method and obtain an initial basic feasible solution to the given transportation problem using matrix minima method:

OR

5. (P) Define:

4

- (i) Basic feasible solution to T.P.
- (ii) Optimal solution to T.P.

(Contd.)

www.FirstRanker.com

www.FirstRanker.com

4

4

4

(Q) Explain North-West Corner rule of finding solution to T.P. and solve the given T.P. by this method:

	W_1	W_2	W_3	Availability
F,	2	7	. 4	5
F ₂	3	3	1	8
F ₃	5	4	7	7
F ₄	1	6	2	4
Requirement	7	9	8	

- (A) Explain Assignment problem.
 - (B) Define two person zero sum game.
 - (C) Solve the given sequencing problem :

Job : 1 2 3 4 5 6 7
Time on M₁ : 3 12 15 6 10 11 9
Time on M₂ : 8 10 10 6 12 1 3

Obtain optimum sequence of jobs.

OR

- (P) Explain Maximin and Minimax principle of the theory of games.
 - (Q) State the assumptions made in sequencing problem. 4
 - (R) Solve the following assignment problem:

John

- (A) What is ANOVA? State the assumption in ANOVA.
 - (B) Give the mathematical analysis of one-way classification.
 - (C) State the null hypothesis and ANOVA table for two-way classification with one observation per cell.

OR

- (P) Give the null hypothesis and ANOVA table of one-way classification.
 - (Q) Write the ANOVA table along with null hypothesis for two-way classification with m observations per cell.
 - (R) Carry out the mathematical analysis of two-way classification with one observation per cell.

www.FirstRanker.com

www.FirstRanker.com

10.	(A)	Define:	4
		(i) Treatment	
		(ii) Uniformity trials.	
	(B)	State the principles of design of experiments and explain any one of them.	4
	(C)	What is randomized block design? Give the particular layout of RBD with	four
		treatments A, B, C and D replicated in three blocks.	4
		OR	
11.	(P)	Define CRD and give its mathematical model.	4
	(Q)	Give the null hypothesis and ANOVA table for RBD with t treatments	and
		r replicates.	4
	(R)	State advantages and disadvantages of CRD.	4
12.	(A)	Define Latin square design.	4
	(B)	Give particular layout of 4 × 4 LSD with treatments A, B, C and D.	4
	(C)	Explain Yate's method of obtaining factorial effect totals in 21 factorial experiment.	4
		OR	
13.	(P)	Define factorial experiments and state its advantages.	4
	(Q)	Write the ANOVA table of m × m LSD.	4
	(R)	Give the ANOVA table for 22 factorial experiment.	4