www.FirstRanker.com ## www.FirstRanker.com AW-1773 # B.Sc. Part-III (Semester-VI) Examination | B.Sc. Part-III (SCIENCE STATISTICS | [Maximum Marks: 80 | |---|---| | (a) Non-linear (c) Linear (ii) A necessary and sufficient condition transportation problem is (a) ∑_i a_i > ∑_j b_j (c) ∑_i a_i < ∑_j b_j | perimental units needed are | | (iii) The principle of is not used (a) Randominzation (c) Local control (iv) In 2³ factorial experiment the total | (b) Replication(d) None of the abovetreatment combinations will be in | | number. (a) 8 (c) 4 (C) Answer in ONE sentence: (i) What is saddle point? | (b) 6
(d) 12 | | (ii) Define contrast. (iii) What do you mean by feasible sol (iv) What is mean sum of squares? 2. (A) State the standard form of LPP. (B) Give the Simplex algorithm to solve L. | 4 | (C) Solve the given LPP by graphica $$Max. Z = 3x_1 + 2x_2$$ 4 subject to: $$X_1 - X_2 \le 1$$ $$X_1 + X_2 \ge 3$$ $$X_1, X_2 \geq 0$$ OR - 3. (P) Explain LPP in general. - (Q) Define: 4 (i) Feasible solution 4 - (ii) Net evaluations. - (R) Solve the given LPP graphically: 4 $$Max. Z = x_1 + 2x_2$$ subject to: $$x_1 + x_2 \le 5$$ $$x_2 \le 4$$ $$x_1, x_2 \ge 0$$ - 4. (A) What do you mean by transportation problem? Give its mathematical formation. - (B) Explain matrix minima method and obtain an initial basic feasible solution to the given transportation problem using matrix minima method: OR 4 - 5. (P) Define: - (i) Basic feasible solution to T.P. - (ii) Optimal solution to T.P. (Contd.) #### www.FirstRanker.com #### www.FirstRanker.com 4 4 4 4 4 4 (Q) Explain North-West Corner rule of finding solution to T.P. and solve the given T.P. by this method: | | W_1 | W_2 | W_3 | Availability | |------------------|-------|-------|-------|--------------| | F_1 | 2 | 7 | 4 | 5 | | F ₂ | 3 | 3 | 1 | 8 | | F ₃ | 5 | 4 | 7 | 7 | | \mathbf{F}_{4} | 1 | 6 | 2 | 4 | | Requirement | 7 | 9 | 8 | | - 6. (A) Explain Assignment problem. - (B) Define two person zero sum game. - (C) Solve the given sequencing problem: Job : 1 2 3 4 5 6 7 Time on M_1 : 3 12 15 6 10 11 9 Time on M_2 : 8 10 10 6 12 1 3 Obtain optimum sequence of jobs. ### OR - 7. (P) Explain Maximin and Minimax principle of the theory of games. - (Q) State the assumptions made in sequencing problem. - (R) Solve the following assignment problem: Jobs - 8. (A) What is ANOVA? State the assumption in ANOVA. - (B) Give the mathematical analysis of one-way classification. - (C) State the null hypothesis and ANOVA table for two-way classification with one observation per cell. #### OR - 9. (P) Give the null hypothesis and ANOVA table of one-way classification. - (Q) Write the ANOVA table along with null hypothesis for two-way classification with m observations per cell. - (R) Carry out the mathematical analysis of two-way classification with one observation per cell. # www.FirstRanker.com www.FirstRanker.com | 10. | (A) | Define: | 4 | |-----|-----|--|------| | | | (i) Treatment | | | | | (ii) Uniformity trials. | | | | (B) | State the principles of design of experiments and explain any one of them. | 4 | | | (C) | What is randomized block design? Give the particular layout of RBD with | four | | | | treatments A, B, C and D replicated in three blocks. | 4 | | | | OR | | | 11. | (P) | Define CRD and give its mathematical model. | 4 | | | (Q) | Give the null hypothesis and ANOVA table for RBD with t treatments | and | | | | r replicates. | 4 | | | (R) | State advantages and disadvantages of CRD. | 4 | | 12. | (A) | Define Latin square design. | 4 | | | (B) | Give particular layout of 4 × 4 LSD with treatments A, B, C and D. | 4 | | | (C) | Explain Yate's method of obtaining factorial effect totals in 2 ³ factorial experiment. | 4 | | | | OR | | | 13. | (P) | Define factorial experiments and state its advantages. | 4 | | | (Q) | Write the ANOVA table of $m \times m$ LSD. | 4 | | | (R) | Give the ANOVA table for 22 factorial experiment. | 4 |