B.Sc. (Part-I) Semester-I Examination

1S : PHYSICS

(Mechanics, Properties of Matter Waves and Oscillation)

Time : Three Hours]
[Maximum Marks : 80
Note :-(1) All questions are compulsory.
(2) Draw neat diagrams wherever necessary.

1. (a) Fill in the blanks:
(i) The acceleration due to gravity at the poles is \qquad -
(ii) The fundamental frequency is also called as \qquad .
(iii) Coefficient of viscosity \qquad with increase in temperature.
(iv) Young's modulus of elasticity is related with change in \qquad .
(b) Choose correct answer :
(i) The angle of contact of water with glass is \qquad .
(a) 90°
(b) 0°
(c) Less than 90°
(d) Greater than 90°
(ii) Kepler's second law of planetary motion is about \qquad .
(a) Elliptical orbit
(b) Period
(c) Areal velocity
(d) Volume
(iii) The moment of linear momentum is \qquad
(a) Couple
(b) Torque
(c) Impulse
(d) Angular momentum
(iv) In compound pendulum, centre of suspension and centre of oscillation are \qquad .
(a) Interchangeable
(b) Not Interchangeable
(c) At equal distance from C.G.
(d) None of the above
2
(c) Answer in one sentence :
(i) What is cantilever ?
(ii) Define streamline flow.
(iii) Define cohesive force.
(iv) Define moment of inertia.

EITHER

2. (a) Define acceleration due to gravity. Explain variation of ' g ' with :
(i) Height
(ii) Depth
6
(b) State and prove Gauss's Theorem. 4
(c) Define :
(i) Gravitational field
(ii) Gravitational potential

OR
3. (p) Derive an expression for gravitational potential due to spherical shell at a point outside the shell. 6
(q) State and prove Kepler's Third law of planetary motion. 6

EITHER

4. (a) State and prove theorem of parallel axes, for moment of Inertia. 5
(b) A uniform rod of length ' L ' and mass ' m ' rotates about an axis passing through one of its ends. Calculate moment of inertia about this axis.
(c) If a disc has mass 5 kg and radius 0.5 m , calculate M.I. of a disc about a tangent perpendicular to its plane.

OR

5. (p) State and prove law of conservation of angular momentum.
(q) Derive an expression for M.I. of circular disc about an axis passing through its center and perpendicular to its plane.
(r) Calculate M.I. of a disc of mass 1 kg and radius 10 cm about an axis passing through its center and perpendicular to its plane.

EITHER

6. (a) What is compound pendulum ? Obtain an expression for the periodic time of compound pendulum.
(b) Define linear S.H.M. and obtain differential equation of S.H.M. 4
(c) A mass of 50 gm is attached to a spring having spring constant 0.2 . Determine time period of oscillation.
2

OR

7. (p) Define the angular S.H.M. show that the vibration of bar magnet in uniform magnetic field is angular S.H.M.

(q) Solve the differential equation of damped harmonic motion and show that velocity of
particle decreases exponentially.
(r) What are bifilar oscillations ? 2

EITHER

8. (a) Find the resultant displacement for the superposition of two mutually perpendicular S.H.M's of same period.
(b) What is piezoelectric effect ? Explain the production of ultrasonic waves of piezoelectric oscillation.
OR
9. (p) Describe construction and working of Kundt's tube.4
(q) Derive Newton's formula for velocity of sound in medium. 5
(r) State applications of Ultrasonic wave.

3
EITHER
10. (a) Find the expression for twisting couple per unit twist for cylindrical wire.
(b) Explain how modulus of rigidity of wire can be determined by Maxwell Needle. 6 OR
11. (p) What are torsional oscillations? Derive an expression for the periodic time of torsional pendulum.
(q) Derive an expression for depression at the loaded end of light beam clamped horizontally at the other end.

EITHER

12. (a) State and prove Bernoulli's theorem.
(b) State and prove Stoke's law. 4
(c) What is the significance of Reynold's number ?2

OR
13. (p) Explain Jaeger's method to determine surface tension of a liquid.
(q) Explain :
(i) Streamline flow
(ii) Turbulent flow.
(r) What is surface tension ? Give its unit and dimensions. 2

B.Sc. (Part-I) Semester-I Examination

1S : PHYSICS

(Mechanics, Properties of Matter Waves and Oscillation)

Time : Three Hours]
[Maximum Marks : 80
Note :-(1) All questions are compulsory.
(2) Draw neat diagrams wherever necessary.

1. (a) Fill in the blanks :
(i) The acceleration due to gravity at the poles is \qquad .
(ii) The fundamental frequency is also called as \qquad .
(iii) Coefficient of viscosity \qquad with increase in temperature.
(iv) Young's modulus of elasticity is related with change in \qquad .
(b) Choose correct answer :
(i) The angle of contact of water with glass is \qquad .
(a) 90°
(b) 0°
(c) Less than 90°
(d) Greater than 90°
(ii) Kepler's second law of planetary motion is about \qquad .
(a) Elliptical orbit
(b) Period
(c) Areal velocity
(d) Volume
(iii) The moment of linear momentum is \qquad .
(a) Couple
(b) Torque
(c) Impulse
(d) Angular momentum
(iv) In compound pendulum, centre of suspension and centre of oscillation are \qquad .
(a) Interchangeable
(b) Not Interchangeable
(c) At equal distance from C.G.
(d) None of the above2
(c) Answer in one sentence :
(i) What is cantilever?
(ii) Define streamline flow.
(iii) Define cohesive force.
(iv) Define moment of inertia.

EITHER

2. (a) Define acceleration due to gravity. Explain variation of ' g ' with :
(i) Height
(ii) Depth
6
(b) State and prove Gauss's Theorem.
(c) Define :
(i) Gravitational field
(ii) Gravitational potential

OR
3. (p) Derive an expression for gravitational potential due to spherical shell at a point outside the shell.
(q) State and prove Kepler's Third law of planetary motion.

EITHER

4. (a) State and prove theorem of parallel axes, for moment of Inertia. 5
(b) A uniform rod of length ' L ' and mass ' m ' rotates about an axis passing through one of its ends. Calculate moment of inertia about this axis.
(c) If a disc has mass 5 kg and radius 0.5 m , calculate M.I. of a disc about a tangent perpendicular to its plane.
www.FirstRanker.com

OR

5. (p) State and prove law of conservation of angular momentum.
(q) Derive an expression for M.I. of circular disc about an axis passing through its center and perpendicular to its plane.
(r) Calculate M.I. of a disc of mass 1 kg and radius 10 cm about an axis passing through its center and perpendicular to its plane.

EITHER

6. (a) What is compound pendulum ? Obtain an expression for the periodic time of compound pendulum.
(b) Define linear S.H.M. and obtain differential equation of S.H.M. 4
(c) A mass of 50 gm is attached to a spring having spring constant 0.2 . Determine time period of oscillation.
OR
7. (p) Define the angular S.H.M. show that the vibration of bar magnet in uniform magnetic field is angular S.H.M.
(q) Solve the differential equation of damped harmonic motion and show that velocity of particle decreases exponentially.
(r) What are bifilar oscillations ? 2

EITHER

8. (a) Find the resultant displacement for the superposition of two mutually perpendicular
S.H.M's of same period.
(b) What is piezoelectric effect? Explain the production of ultrasonic waves of piezoelectric
oscillation.

OR
9. (p) Describe construction and working of Kundt's tube.
(q) Derive Newton's formula for velocity of sound in medium. 5
(r) State applications of Ultrasonic wave. 3

EITHER

10. (a) Find the expression for twisting couple per unit twist for cylindrical wire. 6
(b) Explain how modulus of rigidity of wire can be determined by Maxwell Needle. 6 OR
11. (p) What are torsional oscillations? Derive an expression for the periodic time of torsional pendulum.
(q) Derive an expression for depression at the loaded end of light beam clamped horizontally at the other end.

EITHER

12. (a) State and prove Bernoulli's theorem.
(b) State and prove Stoke's law.4
(c) What is the significance of Reynold's number ? 2
OR
13. (p) Explain Jaeger's method to determine surface tension of a liquid.
(q) Explain:
(i) Streamline flow
(ii) Turbulent flow.
(r) What is surface tension ? Give its unit and dimensions.
