

www.FirstRanker.com

www.FirstRankey.cbm6

B. Sc. (Part-I) Semester—II Examination MATHEMATICS

(Vector Analysis and Solid Geometry) Paper-IV

Time: T	hree Hours]	[Maximur	n Marks: 60
Note :-	 Question No. 1 is compulsory; attempt Attempt one question from each unit. 	it once only.	
1. Cho	ose the correct alternative :		
(i)	If three vectors \vec{a} , \vec{b} , \vec{c} are coplanar, t following is correct ?	hen for scalar triple product,	which of the
	(a) $\vec{b} \times \vec{c}$ is perpendicular to the vector	ā	
	(b) $\vec{b} \times \vec{c}$ is parallel to the vector \vec{a}		
	(c) $\vec{b} \times \vec{c}$ is equal to the vector \vec{a}		
	(d) None of these.		- 1
(ii)	The scalar triple product represents the v	olume of the	
	(a) rectangle	(b) sphere	
	(c) parallelepiped	(d) ellipse	1
(iii)	The curvature k is determined		
	(a) only in magnitude	(b) only in sign	20.10
	(c) both in magnitude and sign	(d) neither in magnitude	nor sign 1
(iv)	A plane determined by the tangent and a	binormal at P(r) to the curve	$\vec{r} = \vec{r}(s)$ is
	(a) osculating plane	(b) rectifying plane	
	(c) normal plane	(d) none of these	1
(v)	Which of the following quantity is define	d ?	
	(a) div $(\text{div }\vec{f})$	(b) curl $(\operatorname{div} \vec{f})$	
	(c) grad (curl f)	(d) grad (div \vec{f})	1
(vi)	A vector \vec{f} is solenoidal if		
	(a) curl $\vec{f} = 0$	(b) div $\vec{f} = 0$	
	(c) grad $\vec{f} = 0$	(d) grad $(\operatorname{div} \overline{f}) = 0$	1

	(Fir	strankeriaschoicecircle is www.FirstRanker.c	f the	sphere, the circle is called a com	-
		(a) small circle	(b)	imaginary circle	
		(c) great circle	(d)	none of these	1
	(viii)The equations of the sphere and the plane tak	en to	gether represent a	
		(a) sphere	(b)	plane	
		(c) straight line	(d)	circle	1
	(ix)	Every section of a right circular cone by a pl	lane j	perpendicular to its axis is	_
		(a) a sphere	(b)	a cone	
		(c) a circle	(d)	a cylinder	1
	(x)	The general equation of the cone passing thro	ugh 1	the coordinate axes is	
		(a) $\hat{f}yz + gzx + hxy = 0$	(b)	yz + zx + xy = 0	
		(c) $ax^2 + by^2 + cz^2 = 0$	(d)	$x^2 + y^2 + z^2 = 0$	1
		UNITI			
2.	(a)	Show that $\vec{a} \times (\vec{b} \times \vec{c}), \vec{b} \times (\vec{c} \times \vec{a}), \vec{c} \times (\vec{a} \times \vec{b})$ are co	plana	ar.	4
	(b)	If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c})$	ā) = ·	$\frac{1}{2}\vec{b}$, find the angles which \vec{a} mak	CS
		with \vec{b} and \vec{c} , \vec{b} and \vec{c} being non-parallel.			4
3.	(p)	If \ddot{f} is a vector function of t and u is a scala	ır fun	ction of t, then prove that :	
		$\frac{d}{dt}\left(u\vec{f}\right) = u\frac{d\vec{f}}{dt} + \frac{du}{dt}\vec{f}.$			5
	(q)	Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{dt^{2}} dt$, where			
		$\vec{r}(t) = 5t^2 \vec{i} + t \vec{j} - t^3 \vec{k}.$			200
		UNITII			
4.	(a)	Prove that helices are the only twisted curves direction.	who	se Darboux's vector has a consta	uni S
	(b)	For the curve $x = 3t$, $y = 3t^2$, $z = 2t^3$ at the point plane, normal plane and rectifying plane.	it t =	I, find the equations for osculati	ng 5
5.	(p)	For the curve $x = a(3t - t^3)$, $y = 3at^2$, $z = a(3t + are equal)$	- t¹), :	show that the curvature and torsi	OT
	(q)	If $\vec{t}' = \vec{d} \times \vec{t}$, $\vec{n}' = \vec{d} \times \vec{n}$, $\vec{b}' = \vec{d} \times \vec{b}$, then find the ve	ector	\vec{d} .	4

www.FiratRenker.com

www.FirstRanker.com

6. (a) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then show that $div(r^n \vec{r}) = (n+3)r^n$.

- 4
- (b) Find the directional derivative of $\phi = xy^2 + yz^2$ at the point (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$.
- (c) If $\phi = 3x^2y y^3z^2$, find grad ϕ at the point (1, -2, -1).
- 7. (p) If $\vec{F} = (2x + y^2)\vec{i} + (3y 4x)\vec{j}$, evaluate $\int_{c}^{\vec{F} \cdot d\vec{r}}$ along the parabolic arc $y = x^2$ joining (0, 0) and (1, 1).
 - (q) Apply Green's theorem to prove that the area enclosed by a simple plane curve C is $\frac{1}{2} \int_{c}^{c} (xdy ydx)$. Hence find the area of an ellipse whose semi-major and semi-minor axes are of lengths a and b.

UNIT-IV

- 8. (a) Find the equation of a sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.
 - (b) Find the equation of the sphere circumscribing the tetrahedron whose faces are :

$$x = 0$$
, $y = 0$, $z = 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

- 9. (p) State and prove the condition for the orthogonality of two spheres. 1+4
 - (q) Find the coordinates of the centre and radius of the circle x + 2y + 2z = 15; $x^2 + y^2 + z^2 2y 4z = 11$.

UNIT-V

- (a) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere x² + y² + z² = a².
 - (b) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line x = -2y = z.
- 11. (p) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and the guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (q) Find the equation of the right circular cylinder of radius z whose axis passes through (1, 2, 3) and has direction cosines proportional to 2, -3, 6.

www.FirstRanker.com

www.FirstRanker.com