www.FirstRanker.com

www.FirstRankev.cb656

B. Sc. (Part-I) Semester—II Examination MATHEMATICS

(Vector Analysis and Solid Geometry)

Paper-IV

Tim	ie : T	hree	Hours]		[Maximum Marks :	50
Not	e :—		Question No. 1 is compulsory; attempt it Attempt one question from each unit.	once of	nly.	
1.	Cho	ose	the correct alternative :			
	(i)		hree vectors \vec{a} , \vec{b} , \vec{c} are coplanar, the owing is correct?	n for s	scalar triple product, which of the	he
	¥ -	(a)	$\vec{b} \times \vec{c}$ is perpendicular to the vector \vec{a}	(2)		
		(b)	$\vec{b} \times \vec{c}$ is parallel to the vector \vec{a}			
		(c)	$\vec{b} \times \vec{c}$ is equal to the vector \vec{a}		5	
		(d)	None of these.			1
	(ii)	The	scalar triple product represents the volu	ume of	the	
		(a)	rectangle	(b)	sphere	
		(c)	parallelepiped	(d)	ellipse	1
	(iii)	The	curvature k is determined			
		(a)	only in magnitude	(b)	only in sign	
		(c)	both in magnitude and sign	(d)	neither in magnitude nor sign	1
	(iv)	140000	plane determined by the tangent and bir	normal	at $P(\vec{r})$ to the curve $\vec{r} = \vec{r}(s)$	is
		(a)	osculating plane	(b)	rectifying plane	
		(c)	normal plane	(d)	none of these	1
	(v)	Whi	ich of the following quantity is defined	?		
		(a)	$\operatorname{div}\left(\operatorname{div}\vec{\mathbf{f}}\right)$	(b)	curl (div f)	
		(c)	grad (curl f)	(d)	grad $(div \vec{f})$	1
	(vi)	A v	rector f is solenoidal if			
		(a)	curl $\vec{f} = 0$	(b)	$div \vec{f} = 0$	
		(c)	grad $\vec{f} = 0$	(d)	grad $(\operatorname{div} \vec{\mathbf{f}}) = 0$	1

_	. 1	i ii stituiiitei teoiii
		(Firstran kadius broise circle is equal to the radius of the sphere, the circle is called a
		(VII) II THE TRUITS OF THE CHOICE WANTED THE PARTY CAME SPILE WANTED THE PARTY CAME.

(a) small circle

(b) imaginary circle

(c) great circle

(d) none of these

1

(viii) The equations of the sphere and the plane taken together represent a _____.

(a) sphere

(b) plane

(c) straight line

(d) circle

1

(ix) Every section of a right circular cone by a plane perpendicular to its axis is

(a) a sphere

(b) a cone

(c) a circle

(d) a cylinder

1

(x) The general equation of the cone passing through the coordinate axes is _____.

(a) fyz + gzx + hxy = 0

(b) yz + zx + xy = 0

(c) $ax^2 + by^2 + cz^2 = 0$

(d) $x^2 + y^2 + z^2 = 0$

1

UNIT-I

2. (a) Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.

5

- (b) If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and \vec{c} , \vec{b} and \vec{c} being non-parallel.
- 3. (p) If \hat{f} is a vector function of t and u is a scalar function of t, then prove that :

$$\frac{d}{dt}\left(u\vec{f}\right) = u\frac{d\vec{f}}{dt} + \frac{du}{dt}\vec{f}.$$

5

(q) Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{dt^{2}} dt$, where

$$\vec{r}(t) = 5t^2 \vec{i} + t \vec{j} - t^3 \vec{k}.$$

5

UNIT--II

- 4. (a) Prove that helices are the only twisted curves whose Darboux's vector has a constant direction.
 - (b) For the curve x = 3t, $y = 3t^2$, $z = 2t^3$ at the point t = 1, find the equations for osculating plane, normal plane and rectifying plane.
- 5. (p) For the curve $x = a(3t t^3)$, $y = 3at^2$, $z = a(3t + t^3)$, show that the curvature and torsion are equal.
 - (q) If $\vec{t}' = \vec{d} \times \vec{t}$, $\vec{n}' = \vec{d} \times \vec{n}$, $\vec{b}' = \vec{d} \times \vec{b}$, then find the vector \vec{d} .

5

www.FirstRanker.com

www.FirstRanker.com

4

- 6. (a) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then show that $\operatorname{div}(r^n \vec{r}) = (n+3)r^n$.
 - (b) Find the directional derivative of $\phi = xy^2 + yz^2$ at the point (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$.
 - (c) If $\phi = 3x^2y y^3z^2$, find grad ϕ at the point (1, -2, -1).
- 7. (p) If $\vec{F} = (2x + y^2)\vec{i} + (3y 4x)\vec{j}$, evaluate $\int_{c}^{\vec{F} \cdot d\vec{r}}$ along the parabolic arc $y = x^2$ joining (0, 0) and (1, 1).
 - (q) Apply Green's theorem to prove that the area enclosed by a simple plane curve C is $\frac{1}{2}\int_{c}^{c}(xdy-ydx)$. Hence find the area of an ellipse whose semi-major and semi-minor axes are of lengths a and b.

UNIT-IV

- 8. (a) Find the equation of a sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.
 - (b) Find the equation of the sphere circumscribing the tetrahedron whose faces are :

$$x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

- 9. (p) State and prove the condition for the orthogonality of two spheres. 1+4
 - (q) Find the coordinates of the centre and radius of the circle x + 2y + 2z = 15; $x^2 + y^2 + z^2 2y 4z = 11$.

UNIT-V

- 10. (a) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line x = -2y = z.
- 11. (p) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and the guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (q) Find the equation of the right circular cylinder of radius z whose axis passes through (1, 2, 3) and has direction cosines proportional to 2, -3, 6.

www.FirstRanker.com

www.FirstRanker.com