

www.FirstRanker.com

www.FirstRanker.com AW-1700

B.Sc. Part-II (Semester-III) Examination BIOCHEMISTRY

(Intermediary Metabolism)

Time: T	hree Hours]	[Maximum Marks	: 80
Note :-	(1) ALL questions are compulsory	and carry equal marks.	
	(2) Draw diagrams wherever necess	ary.	
1. (A)	Fill in the blanks :		
	(i) is a first complex of E1		1/2
	(ii) Carbohydrate is stored in form		1/2
	common metabolic pool.	1/2	
	(iv) is one of bile pigments.		1/2
(B)	Choose the correct alternative :		
	(i) Lock and Key theory was propo		1/2
	(a) Leuwenhoek	(b) Koshland	
	(c) Darvin	(d) Emil Fischer	
	(ii) End product of aerobic glycolys	sis:	1/2
	(a) Acetyl CoA	(b) Lactate	
	(c) Pyruvate	(d) CO ₂ and H ₂ O	
	(iii) Glucose-6 phosphate is an allos	steric inhibitor of :	1/2
	(a) Glucokinase	(b) Hexokinase	
	(c) Phosphohexoisomerase	(d) None of the above	
	(iv) The following is required as reductant in fatty acid synthesis:		
	(a) NADH	(b) NADPH	
	(c) FMN	(d) FAD	
(C)	Answer in ONE sentence :		
	(i) Inhibitor		1
	(ii) Glycolysis		1
	(iii) Coenzyme		1
	(iv) Km		1
2. Ans	wer the following:		
(a)	Oxidative phase of HMP shunt		4
(b)	Mechanism of oxidative phosphoryla	ation	4
(c)	Investment phase of glycolysis.		4
		OR	

		www.FirstRanker.com	www.FirstRanker.com
	(p)	Glyoxalate bypass	4
	(q)	Glycogen synthesis in Liver	4
	(r)	CO2 generating steps of Kreb's cycle.	4
3.	(a)	Describe biosynthesis of saturated fatty acids.	4
	(b)	Explain β-oxidation of fatty acids.	4
	(c)	Explain in brief hydrolysis of triacylglycerols.	4
		OR	
	(p)	Describe in brief metabolism of ketone bodies.	4
	(q)	Discuss in brief biosynthesis of unsaturated fatty acids.	4
	(r)	Describe transport of fatty acids into mitochondrial matrix.	4
4.	Des	cribe in detail regulation of cholesterol metabolism.	12
		OR	
	Des	cribe in detail biosynthesis of cephalin and lecithin.	12
5.	(a)	Describe urea cycle in brief.	4
	(b)	Describe biosynthesis of cysteine.	4
	(c)	Describe biosynthesis of serine.	4
		OR-	
	(p)	Describe transamination and decarboxylation of amino acid	ls. 4
	(q)	Describe biosynthesis of Tyrosine.	4
	(r)	Explain catabolism of Methionine.	4
6.	(a)	Discuss the sources of atoms in purines.	4
	(b)	Describe in brief biosynthesis of adenine.	4
	(c)	Describe in brief regulation of purine biosynthesis.	4
		OR	
	(p)	Describe sources of atoms in pyrimidines.	4
	(q)	Explain in brief regulation of pyrimidine biosynthesis.	4
	(r)	Describe in brief biosynthesis of guanine.	4
7.	Exp	plain in detail degradation of heme pigment.	12
		OR	
	De	scribe in detail production of Bilirubin bile pigment.	12