

B.Sc. (Part-II) Semester-III Examination www.FirstRanker.com

MATHEMATICS

(Advanced Calculus)

Paper-V

	Гарс	·•				
Time:	Three Hours]	[Maximum M	larks: 60			
Note :-	-(1) Question No. 1 is compulsory. A	tempt once.				
	(2) Attempt ONE question from eac	ı unit.				
1. Ch	noose the correct alternative :-					
(1)	Every Cauchy sequence of real numb	er is				
	(a) unbounded	(b) bounded				
	(c) bounded as well as unbounded	(d) None of these				
(2)	The sequence $\langle s_n \rangle$ where $s_n = \frac{n}{n+1}$	s				
	(a) monotonically increasing	(b) monotonically decreasing				
	(c) constant sequence	(d) None of these				
(3)	The harmonic series $\Sigma \frac{1}{n}$ is					
	(a) Convergent	(b) Oscillatory				
	(c) Divergent	(d) None of these				
(4)	Let Σa_n be a series with positive terms and $\lim_{n\to\infty} a_n^{1/n} = I$, then the series Σa_n is convergent					
	if	B→#				
	(a) $l = 1$	(b) l > 1				
	(c) l < 1	(d) None of these				
(5)	If $\lim_{P \to P_0} f(P) = f(P_0)$; where $P_0 \in \mathbb{R}^2$	then				
	(a) f is discontinuous at P ₀	(b) f is continuous at Po				
	(c) f is continuous at P	(d) None of these				
(6)	If $\lim_{(x,y)\to(x_y,y_0)} f(x, y) = l$ exist then rep	eated limits are				
	(a) equal	(b) not equal				
	(c) not exist	(d) None of these				
(7)	The function f(P) has absolute minim	at Po in D if				
	(a) $f(P) \le f(P_0)$; $\ne P \in D$	(b) $f(P) \ge f(P_0)$; $\forall P \in D$				
	(c) $f(P) = f(P_0)$; $\forall P \in D$	(d) None of these				

www.FirstRanker.com

4	40	·٦		-1
н	61	u		
- 7		٠,		

(b) 9

(c)
$$\frac{1}{9}$$

(d) None of these

(9) The value of $\int_{1}^{2} \int_{1}^{3} x^{2}y \,dy \,dx$ is _____.

(b)
$$\frac{3}{28}$$

(c)
$$\frac{28}{3}$$

(d) 1

(10) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$ is _____.

10

UNIT--

2. (a) Prove that a convergent sequence of a real numbers is bounded.

5

(b) Show that the sequence
$$\langle S_r \rangle$$
, $S_q = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ is convergent.

5

3. (p) Prove that every convergent sequence of real numbers is a Cauchy sequence.

5

(q) Show that the sequence $\leq S_n >$, where $S_n = \left(1 + \frac{1}{n}\right)^n$, is convergent and that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ lies between 2 and 3.

UNIT-II

(a) Prove that the series Σx_n converges if and only if for every ∈ > 0, ∃ a M(∈) ∈ N such that m ≥ n ≥ M ⇒ | x_{n+1} + x_{n+2} + + x_m| < ∈.

(b) Test the convergence of the series $\frac{1}{x(x+2)} + \frac{1}{(x+2)(x+4)} + \frac{1}{(x+4)(x+6)} + \dots$ $x \in \mathbb{R}, x \neq 0.$

5. (p) Prove that p-series $\Sigma \frac{1}{n^p}$ is convergent for p > 1 and divergent for $p \le 1$.

(q) Test the convergence of the series $\sum \frac{n^3 + a}{2^n + a} \forall n \in \mathbb{N}$.

YBC—15253 2 (Contd.)

www.FirstRanker.com

www.FirstRanker.com

- 6. (a) Prove that $\lim_{(x,y)\to(4,-1)} (3x-2y) = 14$ by using $\epsilon \delta$ definition of a limit of a function.
 - (b) Expand $x^3 + y^3 3xy$ in powers of x 2 and y 3.
 - (c) Let real valued functions f and g be continuous in an open set D ⊆ R² then prove that f + g is continuous in D.
 3
- (p) Prove that the function f(x, y) = x + y is continuous ∨ (x, y) ∈ R².
 - (q) Expand exy at the point (2, 1) upto first three terms.
 - (r) Let $f(x, y) = \frac{xy}{x^2 y^2}$, show that the simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin and each equals to zero.

UNIT-IV

- 8. (a) Find the maximum and minimum values of $x^3 + y^3 3axy$.
 - (b) Find the least distance of the origin from the plane x 2y + 2z = 9 by using Lagrange's method of multipliers.
- (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r, s
 then prove that

$$\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{u},\mathbf{v})} \frac{\partial(\mathbf{u},\mathbf{v})}{\partial(\mathbf{r},\mathbf{s})} = \frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{r},\mathbf{s})}.$$

(q) If xu = yz, yv = xz and zw = xy find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration :

$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2 + y^2}} \, dy \, dx.$$

- (b) Evaluate $\int_{v} (2x+y)dv$, where v is the closed region bounded by the cylinder $z = 4 x^2$ and the planes x = 0, x = 2, y = 0, y = 2, z = 0.
- 11. (p) Evaluate by Stoke's theorem $\int_{c} (e^{x}dx + 2ydy dz)$, where c is the curve $x^{2} + y^{2} = 4$, z = 2.
 - (q) Evaluate by Gauss Divergence theorem $\iint_{s} \overline{f} \cdot \overline{n} ds$; where

 $\bar{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ and s is the surface of rectangular parallelepiped $0 \le x \le a$; $0 \le y \le b$; $0 \le z \le c$.

YBC-15253

www.FirstRanker.com

www.FirstRanker.com