B.Sc. (Part-II) Semester-If Examination
 MATHEMATICS
 (Advanced Calculus)
 Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :-
(1) Every Cauchy sequence of real number is \qquad .
(a) unbounded
(b) bounded
(c) bounded as well as unbounded
(d) None of these
(2) The sequence $<\mathrm{s}_{\mathrm{n}}>$ where $\mathrm{s}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}+1}$ is \qquad .
(a) monotonically increasing
(b) monotonically decreasing
(c) constant sequence
(d) None of these
(3) The harmonic series $\Sigma \frac{1}{n}$ is \qquad .
(a) Convergent
(b) Oscillatory
(c) Divergent
(d) None of these
(4) Let $\sum \mathrm{a}_{\mathrm{n}}$ be a series with positive terms and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}^{1 / n}=l$, then the series $\sum \mathrm{a}_{\mathrm{n}}$ is convergent if \qquad .
(a) $l=1$
(b) $l>1$
(c) $l<1$
(d) None of these
(5) If $\lim _{P \rightarrow P_{0}} f(P)=f\left(P_{0}\right)$; where $P, P_{0} \in R^{2}$ then \qquad .
(a) f is discontinuous at P_{0}
(b) f is continuous at P_{0}
(c) f is continuous at P
(d) None of these
(6) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=l$ exist then repeated limits are \qquad -
(a) equal
(b) not equal
(c) not exist
(d) None of these
(7) The function $f(P)$ has absolute minima at P_{0} in D if \qquad .
(a) $f(P) \leq f\left(P_{0}\right) ; \forall P \in D$
(b) $f(P) \geq f\left(P_{0}\right) ; \forall P \in D$
(c) $\mathrm{f}(\mathrm{P})=\mathrm{f}\left(\mathrm{P}_{0}\right) ; \forall \mathrm{P} \in \mathrm{D}$
(d) None of these

FirstRanker.com

Firgtranker's ghpice $\mathrm{x}+4 \mathrm{w}$ whw FirstRanker.com
(a) 1
(b) 9
(c) $\frac{1}{9}$
(d) None of these
(9) The value of $\int_{1}^{2} \int_{1}^{3} x^{2} y d y d x$ is \qquad .
(a) - 1
(b) $\frac{3}{28}$
(c) $\frac{28}{3}$
(d) 1
(10) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z$ is \qquad .
(a) 0
(b) 2
(c) -1
(d) 1

10

UNIT-I

2. (a) Prove that a convergent sequence of a real numbers is bounded.
(b) Show that the sequence $\left\langle\mathrm{S}_{\mathrm{r}}\right\rangle, \mathrm{S}_{\mathrm{n}}=\frac{1}{1!}+\frac{1}{2!}+\ldots \ldots+\frac{1}{\mathrm{n}!}$ is convergent.
3. (p) Prove that every convergent sequence of real numbers is a Cauchy sequence.
(q) Show that the sequence $<\mathrm{S}_{\mathrm{n}}>$, where $\mathrm{S}_{\mathrm{n}}=\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$, is convergent and that $\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$ lies between 2 and 3 .

UNIT-II

4. (a) Prove that the series $\sum x_{n}$ converges if and only if for every $\in>0, \exists$ a $M(\epsilon) \in N$ such that $m \geq n \geq M \Rightarrow\left|x_{n+1}+x_{n+2}+\ldots \ldots+x_{m}\right|<\epsilon$.
(b) Test the convergence of the series $\frac{1}{x(x+2)}+\frac{1}{(x+2)(x+4)}+\frac{1}{(x+4)(x+6)}+$ $x \in R, x \neq 0$.
5. (p) Prove that p -series $\Sigma \frac{1}{\mathrm{n}^{\mathrm{p}}}$ is convergent for $\mathrm{p}>1$ and divergent for $\mathrm{p} \leq 1$.
(q) Test the convergence of the series $\sum \frac{n^{3}+a}{2^{n}+a} \forall n \in N$.
6. (a) Prove that $\lim _{(x, y) \rightarrow(4,-1)}(3 x-2 y)=14$ by using $\in-\delta$ definition of a limit of a function.
(b) Expand $\mathrm{x}^{3}+\mathrm{y}^{3}-3 \mathrm{xy}$ in powers of $\mathrm{x}-2$ and $\mathrm{y}-3$.
(c) Let real valued functions f and g be continuous in an open set $D \subseteq R^{2}$ then prove that $f+g$ is continuous in D.
7. (p) Prove that the function $f(x, y)=x+y$ is continuous $\forall(x, y) \in R^{2}$.
(q) Expand e^{xy} at the point $(2,1)$ upto first three terms.
(r) Let $f(x, y)=\frac{x y}{x^{2}-y^{2}}$, show that the simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin and each equals to zero.

3

UNIT-IV

8. (a) Find the maximum and minimum values of $x^{3}+y^{3}-3 a x y$.
(b) Find the least distance of the origin from the plane $x-2 y+2 z=9$ by using Lagrange's method of multipliers.
9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r, s then prove that

$$
\begin{equation*}
\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{u}, \mathrm{v})} \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{r}, \mathrm{~s})}=\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{r}, \mathrm{~s})} \tag{5}
\end{equation*}
$$

(q) If $x u=y z, y v=x z$ and $z w=x y$ find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration:

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x \tag{5}
\end{equation*}
$$

(b) Evaluate $\int_{v}(2 x+y) d v$, where v is the closed region bounded by the cylinder $\mathrm{z}=4-\mathrm{x}^{2}$ and the planes $\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=0, \mathrm{y}=2, \mathrm{z}=0$.
11. (p) Evaluate by Stoke's theorem $\int_{c}\left(e^{x} d x+2 y d y-d z\right)$, where c is the curve $x^{2}+y^{2}=4$, $z=2$.
(q) Evaluate by Gauss Divergence theorem $\iint_{s} \overline{\mathrm{f}} . \overline{\mathrm{n}} \mathrm{ds}$; where
$\bar{f}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ and s is the surface of rectangular parallelepiped $0 \leq x \leq a ; 0 \leq y \leq b ; 0 \leq z \leq c$.

