FirstRanker.com

AW-1682

www.FirstRanker.com www.FirstRanker. B.Sc. (Part-II) Semester-III Examination

MATHEMATICS

(Advanced Calculus)

Paper—V

Time : Three Hours]

[Maximum Marks : 60

Note :--- (1) Question No. 1 is compulsory. Attempt once. (2) Attempt **ONE** question from each unit.

1. Choose the correct alternative :---

- (1) Every Cauchy sequence of real number is _____
 - (a) unbounded (b) bounded
 - (c) bounded as well as unbounded (d) None of these

(2) The sequence $\langle s_n \rangle$ where $s_n = \frac{n}{n+1}$ is _____

- (a) monotonically increasing (b) monotonically decreasing
- (c) constant sequence (d) None of these
- (3) The harmonic series $\Sigma \frac{1}{n}$ is _____.
 - (a) Convergent (b) Oscillatory
 - (c) Divergent (d) None of these

(4) Let Σa_n be a series with positive terms and $\lim_{n \to \infty} a_n^{1/n} = l$, then the series Σa_n is convergent if _____.

- (a) l = 1(b) l > 1(c) l < 1(d) None of these
- (5) If $\lim_{P \to P_0} f(P) = f(P_0)$; where $P, P_0 \in \mathbb{R}^2$ then _____.
 - (a) f is discontinuous at P_0 (b) f is continuous at P_0
 - (c) f is continuous at P (d) None of these

(6) If lim_{(x,y)→(xy,y)} f(x, y) = l exist then repeated limits are _____.
(a) equal (b) not equal

- (c) not exist (d) None of these
- (7) The function f(P) has absolute minima at P_0 in D if _____.
 - (a) $f(P) \le f(P_0)$; $\forall P \in D$
 - (c) $f(P) = f(P_0)$; $\forall P \in D$
- (b) $f(P) \ge f(P_0)$; $\forall P \in D$ (d) None of these

YBC-15253

(Contd.)

E	R	FirstRanker.com		
	(0)	(a) 1	tRanker.com www.FirstRanker. (b) 9	com
		(c) $\frac{1}{9}$	(d) None of these	
	(9)	The value of $\int_{1}^{2} \int_{1}^{3} x^2 y dy dx$ is	*	
		(a) -1	(b) $\frac{3}{28}$	
		(c) $\frac{28}{3}$	(d) 1	
	(10) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$ is			
		(a) 0	(b) 2	
		(c) -1	(d) 1	10
2	UNIT			
2.	(a)	Prove that a convergent sequence of a	real numbers is bounded.	2
	(b)	Show that the sequence $\langle S_r \rangle$, $S_n = \frac{1}{1!}$	$+\frac{1}{2!}+\dots+\frac{1}{n!}$ is convergent.	5
3.	(p)	Prove that every convergent sequence	of real numbers is a Cauchy sequence.	5
	(q)	Show that the sequence $\langle S_n \rangle$, where $S_n =$	$\left(1+\frac{1}{n}\right)^n$, is convergent and that $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$	lies
		between 2 and 3.		5
	UNIT			
4.	4. (a) Prove that the series $\sum x_n$ converges if and only if for every $\in > 0, \exists a M(\in) \in \mathbb{N}$ that $m \ge n \ge M \implies x_{n+1} + x_{n+2} + \dots + x_m \le \epsilon$.			uch 5
	(b) Test the convergence of the series $\frac{1}{x(x+2)} + \frac{1}{(x+2)(x+4)} + \frac{1}{(x+4)(x+6)} + \frac{1}{(x+4)(x+6)}$,
		$x \in \mathbb{R}, x \neq 0.$		5
5.	(p)	Prove that p-series $\Sigma \frac{1}{n^p}$ is convergent	for $p > 1$ and divergent for $p \le 1$.	6
	(q)	Test the convergence of the series $\Sigma \frac{n}{2}$	$\frac{a^3 + a}{a^2 + a} \neq n \in \mathbb{N}.$	4

YBC-15253

www.FirstRanker.com

2

(Contd.)

irstRanker.com

www.FirstRanker.com

www.FirstRanker.com

4

4

3

3

5

5

- 6. (a) Prove that $\lim_{(x,y)\to(4,-1)} (3x-2y) = 14$ by using $\in -\delta$ definition of a limit of a function.
 - (b) Expand $x^3 + y^3 3xy$ in powers of x 2 and y 3.
 - (c) Let real valued functions f and g be continuous in an open set $D \subseteq R^2$ then prove that f + g is continuous in D. 3
- 7. (p) Prove that the function f(x, y) = x + y is continuous $\forall (x, y) \in \mathbb{R}^2$.
 - (q) Expand e^{xy} at the point (2, 1) upto first three terms.
 - (r) Let $f(x, y) = \frac{xy}{x^2 y^2}$, show that the simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin and each equals to zero.

UNIT-IV

- 8. (a) Find the maximum and minimum values of $x^3 + y^3 3axy$.
 - (b) Find the least distance of the origin from the plane x 2y + 2z = 9 by using Lagrange's method of multipliers. 5
- 9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r, s then prove that

$$\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{u},\mathbf{v})} \frac{\partial(\mathbf{u},\mathbf{v})}{\partial(\mathbf{r},\mathbf{s})} = \frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{r},\mathbf{s})}.$$

(q) If xu = yz, yv = xz and zw = xy find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration :

$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \, dy \, dx \, .$$

(b) Evaluate $\int_{v} (2x+y)dv$, where v is the closed region bounded by the cylinder $z = 4 - x^2$ and the planes x = 0, x = 2, y = 0, y = 2, z = 0.

11. (p) Evaluate by Stoke's theorem $\int_{c} (e^{x}dx + 2ydy - dz)$, where c is the curve $x^{2} + y^{2} = 4$, z = 2.

(q) Evaluate by Gauss Divergence theorem $\iint \overline{f} \cdot \overline{n} \, ds$; where

 $\overline{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ and s is the surface of rectangular parallelepiped $0 \le x \le a$; $0 \le y \le b$; $0 \le z \le c$.

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com