

www.FirstRanker.com www.FirstRanker.com
B.Sc. (Part-II) Semester-III Examination

MATHEMATICS

(Elementary Number Theory)

Paner-VI

Time : Three Hours]				[Maximum Marks: 60	
Note :-		Question No. 1 is compul- Attempt ONE question from			
1. Cho	oose	the correct alternative :-			
(1)	Two integers a and b that are not both zero are relatively prime whenever				
	(a)	[a, b] = 1	(b)	(a, b) = 1	
	(c)	(a, b) = d, d > 1	(d)	None of these	1
(2)	For $n \in N$, $(n, n + 1) =$				
	(a)	1	(b)	n	
	(c)	n + 1	(d)	n(n + 1)	1
(3)	A linear Diophantine equation 12x + 8y = 199 has				
	(a)	unique solution	(b)	infinitely many solu	utions
	(c)	no solution	(d)	None of these	1
(4)	Any two distinct Fermat numbers are				
	(a)	Composite	(b)	Relatively prime	
	(c)	Prime numbers	(d)	None of these	. 1
(5)	The non negative residue modulo 7 of 17 is				
	(a)	0	(b)	1	
	(c)	2	(d)	3	1
(6)	The inverse of 2 modulo 5 is				
	(a)	3	(b)	2 .	
	(c)	5	(d)	1	. 1
(7)	For any prime p, $\tau(p) = $				
	(a)	0	(b)	1	
	(c)	2	(d)	None of these	1
(8)	If n is divisible by a power of prime higher than one, then $\mu(n) = $				
	(a)	0	(b)	1	
	(c)	n	(d)	n + 1	1
(9)	The order of 3 modulo 5 is				
	(a)		(b)	2	
	(c)	3	(d)	4	1

16 jrAtqankeris choice of 7 is www.FirstRanker.com www.FirstRanker.com (a) 3 1 (c) 5 (d) 6 UNIT-I 2. (a) Let $\frac{a}{b}$ and $\frac{c}{d}$ be fractions in lowest terms so that (a, b) = (c, d) = 1. Prove that if their sum is an integer, then | b | = | d |. (b) Find the gcd of 275 and -200 and express it in the form xa + yb. 4 (c) If (a, b) = d, then show that $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. 2 (p) Prove that a common multiple of any two non zero integers a and b is a multiple of 3. the lcm [a, b]. (q) If (a, 4) = 2 and (b, 4) = 2, then prove that (a + b, 4) = 4. 4 (r) Prove the (a, a + 2) = 1 or 2 for every integer a. 2 UNIT-II (a) If P is a prime and P | a,a, a, then prove that P divides at least one factor a of the product i.e. $P \mid a_i$ for some i, where $1 \le i \le n$. (b) Find the gcd and lcm of a = 18900 and b = 17160 by writing each of the numbers a and b in prime factorization canonical form. (p) Define Fermat number. Prove that the Fermat number F, is divisible by 641 and hence 5. is composite. 1+4(q) Find the solution of the linear Diaphantine equation 5x + 3y = 52. 5 UNIT-III (a) Prove that congruence modulo m is an equivalence relation. 6 (b) Solve the linear congruence

4

2

 $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

(q) If a, b, c and m are integers with m > 0 such that a ≡ b(mod m), then prove that :

(i) (a - c) ≡ (b - c) (mod m)

(ii) ac = bc (mod m). 2

UNIT-IV

(a) Define Euler φ-function. Prove that if P is a prime and k a positive integer, then 8. $\phi(P^k) = P^{k-1}(P-1).$

Evaluate o(34).

1+3+1

(c) Prove that, for any prime P,

$$\sigma(P!) = (P+1) \sigma((P-1)!).$$
 2

9. (p) State Mobius inversion formula.

Prove that if F is a multiplicative function and $F(n) = \sum_{d/n} f(d)$, then f is also multiplicative.

1+4

(q) Let n = p₁³¹ p₂³² p_r^{4r} be the prime factorization of the integer n > 1. If f is multiplicative function, prove that

$$\sum_{d/n} \mu(d)f(d) = (1 - f(p_1))(1 - f(p_2))....(1 - f(p_r)).$$

UNIT-V

- (a) If P is an odd prime number, then prove that Pⁿ has a primitive root for all positive integer n.
 - (b) Define the order of a modulo m. Given that a has order 3 modulo P, where P is an odd prime, show that a + 1 must have order 6 modulo P.
 1+4
- 11. (p) Prove that the quadratic residues of odd prime P are congruent modulo P to the integers

$$1^2, 2^2, \dots, \left(\frac{P-1}{2}\right)^2$$
.

(q) Solve the quadratic congruence

$$5x^2 - 6x + 2 = 0 \pmod{13}$$
.

YBC—15254 3 625

www.FirstRanker.com

www.FirstRanker.com