B.Sc. (Part-II) Semester-III Examination
 MATHEMATICS

(Elementary Number Theory)
Paper-VI
Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :-
(1) Two integers a and b that are not both zero are relatively prime whenever \qquad .
(a) $[\mathrm{a}, \mathrm{b}]=1$
(b) $(\mathrm{a}, \mathrm{b})=1$
(c) $($ a, b) $=d, d>1$
(d) None of these
(2) For $\mathrm{n} \in \mathrm{N},(\mathrm{n}, \mathrm{n}+1)=$ \qquad .
(a) 1
(b) n
(c) $\mathrm{n}+1$
(d) $n(n+1)$
(3) A linear Diophantine equation $12 \mathrm{x}+8 \mathrm{y}=199$ has \qquad .
(a) unique solution
(b) infinitely many solutions
(c) no solution
(d) None of these
(4) Any two distinct Fermat numbers are \qquad .
(a) Composite
(b) Relatively prime
(c) Prime numbers
(d) None of these
(5) The non negative residue modulo 7 of 17 is \qquad .
(a) 0
(b) 1
(c) 2
(d) 3
(6) The inverse of 2 modulo 5 is \qquad .
(a) 3
(b) 2
(c) 5
(d) 1
(7) For any prime $p, \tau(\mathrm{p})=$ \qquad .
(a) 0
(b) 1
(c) 2
(d) None of these
(8) If n is divisible by a power of prime higher than one, then $\mu(\mathrm{n})=$ \qquad .
(a) 0
(b) 1
(c) n
(d) $\mathrm{n}+1$
(9) The order of 3 modulo 5 is \qquad .
(a) 1
(b) 2
(c) 3
(d) 4
www.FirstRanker.com
(a) 3
(b) 4
(c) 5
(d) 6

UNIT--I
2. (a) Let $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ be fractions in lowest terms so that $(\mathrm{a}, \mathrm{b})=(\mathrm{c}, \mathrm{d})=1$. Prove that if their sum is an integer, then $|b|=|d|$.
(b) Find the gcd of 275 and -200 and express it in the form $x a+y b$.
(c) If $(\mathrm{a}, \mathrm{b})=\mathrm{d}$, then show that $\left(\frac{\mathrm{a}}{\mathrm{d}}, \frac{\mathrm{b}}{\mathrm{d}}\right)=1$.
3. (p) Prove that a common multiple of any two non zero integers a and b is a multiple of the $\mathrm{lcm}[\mathrm{a}, \mathrm{b}]$.
(q) If $(a, 4)=2$ and $(b, 4)=2$, then prove that $(a+b, 4)=4$. 4
(r) Prove the $(a, a+2)=1$ or 2 for every integer a.

UNIT-II

4. (a) If P is a prime and $P \mid a_{1} a_{2} \ldots \ldots a_{n}$, then prove that P divides at least one factor a_{1} of the product i.e. $\mathrm{P} \mid \mathrm{a}_{\mathrm{i}}$ for some i_{3}, where $1 \leq \mathrm{i} \leq \mathrm{n}$.

5
(b) Find the ged and 1 cm of $\mathrm{a}=18900$ and $\mathrm{b}=17160$ by writing each of the numbers a and b in prime factorization canonical form.
5. (p) Define Fermat number. Prove that the Fermat number F_{5} is divisible by 641 and hence is composite.
(q) Find the solution of the linear Diaphantine equation $5 x+3 y=52$.

UNIT--III

6. (a) Prove that congruence modulo m is an equivalence relation.
(b) Solve the linear congruence

$$
15 x \equiv \equiv 10(\bmod 25)
$$

7. (p) Solve the system of three congruences
$x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7)$.
(q) If a, b, c and m are integers with $m>0$ such that $a \equiv b(\bmod m)$, then prove that :
(i) $\begin{array}{ll}(a-c) \equiv(b-c)(\bmod m) & 2\end{array}$
(ii) $\mathrm{ac} \equiv \mathrm{bc}(\bmod m)$. 2
UNIT-IV
8. (a) Define Euler ϕ-function. Prove that if P is a prime and k a positive integer, then

$$
\phi\left(\mathrm{P}^{\mathrm{k}}\right)=\mathrm{P}^{\mathrm{k}-1}(\mathrm{P}-1) .
$$

Evaluate $o\left(3^{4}\right)$.
(h) ir Jf moriket'sqsitijue integer and a is an integer with $(a, m)=1$, then prove that $\mathrm{a}^{\phi(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$.
(c) Prove that, for any prime P,

$$
\begin{equation*}
\sigma(\mathrm{P}!)=(\mathrm{P}+1) \sigma((\mathrm{P}-1)!) \tag{2}
\end{equation*}
$$

9. (p) State Mobius inversion formula.

Prove that if F is a multiplicative function and $\mathrm{F}(\mathrm{n})=\sum_{\mathrm{d} / \mathrm{n}} \mathrm{f}(\mathrm{d})$, then f is also multiplicative.
(q) Let $n=p_{1}{ }^{a_{1}} p_{2}^{a_{2}} \ldots . p_{r}{ }^{a_{4}}$ be the prime factorization of the integer $n>1$. If f is multiplicative function, prove that

$$
\begin{gathered}
\sum_{\mathrm{d} / \mathrm{n}} \mu(\mathrm{~d}) \mathrm{f}(\mathrm{~d})=\left(1-\mathrm{f}\left(\mathrm{p}_{1}\right)\right)\left(1-\mathrm{f}\left(\mathrm{p}_{2}\right)\right) \ldots . .\left(1-\mathrm{f}\left(\mathrm{p}_{\mathrm{r}}\right)\right) \\
\text { UNIT-V }
\end{gathered}
$$

10. (a) If P is an odd prime number, then prove that P^{n} has a primitive root for all positive integer n.
(b) Define the order of a modulo m . Given that a has order 3 modulo P , where P is an odd prime, show that a +1 must have order 6 modulo P.
11. (p) Prove that the quadratic residues of odd prime P are congruent modulo P to the integers

$$
\begin{equation*}
1^{2}, 2^{2}, \ldots .,\left(\frac{\mathrm{P}-1}{2}\right)^{2} \tag{5}
\end{equation*}
$$

(q) Solve the quadratic congruence

$$
\begin{equation*}
5 x^{2}-6 x+2 \equiv 0(\bmod 13) \tag{5}
\end{equation*}
$$

