

www.FirstRanker.com

www.FirstRanker cor

Max. Marks: 70

Code: 13A04803

B.Tech IV Year II Semester (R13) Regular & Supplementary Examinations April 2018 ADVANCED DIGITAL SIGNAL PROCESSING MULTIRATE & WAVELET

(Electronics and Communication Engineering)

Time: 3 hours

1

PART – A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks)
 - (a) Mention two applications which require time frequency analysis.
 - (b) Define dilation and contraction.
 - (c) What are vanishing moments?
 - (d) Mention two properties of Daubechies wavelets.
 - (e) State the condition of admissibility of CWT.
 - (f) Define the Gabor wavelet and give its advantages over Fourier transform.
 - (g) What is a wavelet packet?
 - (h) What is the use of the lifting method?
 - (i) Define a fractal.
 - (j) Mention how wavelets can be used for transient analysis.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Describe the use of wavelets for image compression.

OR

3 Explain the principle of multi-resolution analysis using wavelets.

4 Describe the two band filter bank design for dyadic wavelets.

OR

- 5 (a) Explain the properties of biorthogonal wavelets.
 - (b) Explain the JPEG 2000 compression standard.

UNIT – III

6 Describe the uncertainty principle and its implications.

OR

7 Define the continuous wavelet transform and explain its application in wide band correlation processing.

UNIT – IV

- 8 (a) Define discrete WT and explain the discretization stages from CWT to DWT.
- (b) Explain how the spline function can be used to construct wavelets.

OR

9 Describe variants of the wavelet transforms and its implementation structures.

UNIT – V

10 Describe the use of wavelets in analyzing one dimensional biomedical signal.

OR

11 Explore how the wavelet transforms can be applied for wavelet based modulation and demodulation.
