

www.FirstRanker.com

www.FirstRanker.com R15

Code: 15A04804

B.Tech IV Year II Semester (R15) Advanced Supplementary Examinations July 2019

RF INTEGRATED CIRCUITS

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Calculate the resonant frequency of a parallel RLC tank, given L = 1 nH, C = 1 pF.
 - (b) State skin effect.
 - (c) Write the wave equation in one space dimension.
 - (d) In an open-circuit time constant if R₁ = R₂ = 10 kΩ and C₁ = C₂ = 100 pF, what are the pole frequencies?
 - (e) Having the noise factor, F = SNR_i / SNR_o give the expression to find noise figure.
 - (f) Differentiate between power match and noise match.
 - (g) In a VCO if CM change at X and Y is indistinguishable from a change in V_{cont}, then what will be the change in the oscillation frequency?
 - (h) While constructing a charge-pump PLL using PFD/CP, the loop ideally forces the input phase error to zero. Justify your answer.
 - Define fractional frequency.
 - (j) List out some advantages of GSM radio architectures.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT = N

2 Draw the phasor diagram for a parallel RLC circuit. And derive the expression for impedance and current triangle of the circuit.

OR

- 3 (a) Differentiate between Pi match and T match.
 - (b) Why does the skin effect occur? Mention the factors affecting skin effect in a conductor carrying a.c current.

UNIT - II

4 An air-filled 50Ω coaxial line has a loaded VSWR of 3.3 at a frequency of 3 GHz. Replacing the load with a short cause the voltage minimum to move 1.0 cm towards the generator. What is the normalized load impedance?

OR

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A04804

In the folded cascade circuit shown in figure below, all transistors have the same μC_{ox}(W/L), the same λ and I_{D2} = 2I_{D1}. Find the gain and the output resistance of the amplifier (in terms of g_{m1} and r₀₁ only).

6 Lay out an LNA and connect its input to a pad through a metal line with the length of 200μm and width of 0.5μm. By assuming a noise figure of 2dB for the LNA and a sheet resistance of about 40 mΩ for the metal line determine the overall noise figure. Neglect the input-referred noise current of the LNA.

OR

Which device is used to convert baseband signal or IF frequency to a higher IF or RF frequency for efficient transmission in transmitters? Explain its operation in detail.

UNIT - IV

8 Which amplifier operates linearly across the full input and output range while the transistors remain ON? Explain in detail with necessary equations.

OR

- 9 (a) Write a brief note on resonators.
 - (b) If the input frequency changes by Δω, how much is the change in the phase error? Assume the loop remains lock.

UNIT - V

- 10 (a) During synthesizer settling, the power amplifier in a transmitter is turned OFF. Explain why?
 - (b) Compute the required reference frequency and range of divide ratios for an integer-N synthesizer designed for a Bluetooth receiver for direct conversion and sliding-IF down conversion with f_{LO}=(2/3) f_{RF}.

OR

11 Explain in detail about GSM radio architectures and list out its advantages and disadvantages.
