www.FirstRanker.com

www.FirstRanker.com

Code No: B1202/R10

R10

I B.Pharmacy II Semester Regular Examinations, Oct/Nov 2013 **MATHEMATICS-II**

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the derivative of $x = \log(1 + \sqrt{y})$
 - (b) Find the maximum of the $3\cos x + \sqrt{3}\sin x$, $0 < x < \pi$
- 2. (a) Find the derivative of $y = \sin^2(\cos 3x)$
 - (b) If $u = \log(x^2 + y^2)$ find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$
- 3. (a) Find $\int (\sin x + x^3) dx$
 - (b) Find the area enclosed between the curves $y^2=4x$ and the line y=2x-4.
- 4. (a) Evoluate $\int \frac{dx}{1+\cot x}$ (b) Find the area between the curves $x^2=4y$ and x=4y-2
- 5. (a) Form the differential equation from the relation $y = e^x [A \cos x + B \sin x]$ when A,B are arbitrary constants (b) solve $[1 + e^{x/y}] dx + e^{x/y} [1 - \frac{x}{y}] dy = 0$ (a) Solve $(x + y)^2 \frac{dy}{dx} = a^2$ (b) Solve $\frac{dy}{dx} = \frac{y}{x + \sqrt{xy}}$ (a) Find L $[\sin 2t \cos 3t]$ (b) Find L $[\cos^3 3t]$ (c) Find L $[\sin^3 2t]$ when A,B are arbitrary constants

(b) solve
$$[1 + e^{x/y}] dx + e^{x/y} [1 - \frac{x}{y}] dy = 0$$

- 6. (a) Solve $(x+y)^2 \frac{dy}{dx} = a^2$ (b) Solve $\frac{dy}{dx} = \frac{y}{x+\sqrt{xy}}$
- 7. (a) Find L [sin2t cos3t] (b) Find L [$\frac{1}{\sqrt{t\pi}}$]
- 8. (a) Find L [$cos^3 3t$]
 - (b) Find L $[sin^3 2t]$