## B.Tech I Year (R13) Supplementary Examinations December 2017 <br> NETWORK ANALYSIS

(Common to ECE \& EIE)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ( $10 \times 02=20$ Marks )
(a) Distinguish between a Branch and a node of a circuit.
(b) State Thevenins theorem.
(c) What is meant by poles and zeros?
(d) Write a note on free and forced responses.
(e) What are the conditions for resonance?
(f) What is meant by quality factor?
(g) Express Z-parameters in terms of the h -parameters.
(h) Define state variable.
(i) Discuss the drawbacks of constant k - low pass filter.
(j) Define band elimination filter.

## PART - B

(Answer all five units, $5 \times 10=50$ Marks)
UNIT -I
2 (a) Explain the properties of incidence matrix.
(b) Find the Norton equivalent of the following circuit by taking $2 \Omega$ resistance as load.


3 (a) Explain the terms: (i) Cut set and Cut - set schedule. (ii) Tie set.
(b) Using the superposition theorem, determine the voltage drop and current across the resistor $3.3 \mathrm{k} \Omega$ as shown in figure below.

www.FirstRanker.com
Code: 13A04101

## UNIT - II

6 (a) Compare series resonance and parallel resonance circuits.
(b) A sinusoidal voltage $V(t)=(200 v) \sin \omega t$ is applied to a series RLC circuit with $R=20 \Omega$, $L=10 \mathrm{mH}$, $C=100 n F$. Find the following quantities: (i) The resonant frequency. (ii) The amplitude e of the current at resonance. (iii) The quality factor of the circuit.

## OR

7 (a) Obtain an expression for coefficient of coupling.
(b) Two similar coils connected in series gave a total inductance of 600 mH and when one of the coil is reversed, the total inductance is 300 mH . Determine the mutual inductance between the coils and coefficient of coupling.

## UNIT - IV

The $Z$ parameters of two port network are $Z_{11}=20 \Omega, Z_{22}=30 \Omega, Z_{12}=Z_{21}=10 \Omega$. Find $Y$ parameters and $A B C D$ parameters of the network.

## OR

9 (a) Explain the advantages of state variable analysis.
(b) Derive the State and Output equations.

## UNIT - V

10 (a) Explain in detail about characteristics impedance and propagation constant of symmetric T-network.
(b) Explain in detail about pass band, stop band and cut off frequency of filters.

OR
Design 'm' derived low pass T-section filter having cut-off frequency of 1000 Hz . Design impedance $R_{0}=500 \Omega$ and Resonant frequency of 1200 Hz .

