

Code: 13A56101

www.FirstRanker.com

B.Tech I Year (R13) Supplementary Examinations December 2017

ENGINEERING PHYSICS

(Common to all branches)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Why the fringes are circular in Newton's rings set-up?
 - (b) What is an optical resonator? Why it is used?
 - (c) What is the principle of an optical fibre?
 - (d) What are line defects?
 - (e) What are the drawbacks of classical free electron theory?
 - (f) What is the de-Broglie wavelength of an electron accelerated from rest through a potential difference of 100 volts?
 - (g) Is there any effect of temperature on the Fermi level of an intrinsic semiconductor?
 - (h) What is the physical significance of magnetic permeability?
 - (i) What is Meissner effect?
 - Why the properties of materials are different at nano scale.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- 2 (a) What is an optical fibre? With the help of a neat sketch explain its construction.
 - (b) A parallel beam of sodium light incident on plane transmission grating having 4250 lines/cm and a second order spectral line is observed at an angle of 30°. What is the wavelength of light?

OR

- 3 (a) What is interference? Write a note on colours of thin films.
 - (b) If the fractional difference between the refractive indices of the core and cladding is 0.0135 and numerical aperture is 0.2425, calculate the refractive indices of core and cladding.

UNIT 401

- 4 (a) What is direct and inverse piezoelectricity? Mention few applications of ultrasonics.
 - (b) X-rays of wavelength 0.36 x 10⁻⁸ cm are diffracted by a Bragg spectrometer at a glancing angle of 4.8°. Find the interplanar separation of atomic planar in the crystal.

OR

- 5 (a) Define packing fraction and Bragg's law.
 - (b) Obtain an expression for interplanar spacing in cubic crystals.

[UNIT - III]

- 6 (a) Explain Fermi-Dirac distribution function.
 - (b) Calculate the de-Broglie wavelength of neutron of energy 28.8 eV. Given mass = 1.67 x 10⁻²⁷ kg.

OR

7 Derive an expression for electrical conductivity in accordance with the classical theory.

UNIT - IV

- 8 (a) Explain the principle and working of LED.
 - (b) A sample of carbon steel has a permeability of 0.01 H/m, when the magnetic intensity is 75 A/m. Find the magnetic field in the sample and the field in air.

OR

- 9 (a) State and explain Hysteresis.
 - (b) Find the intrinsic resistivity of Ge at room temperature (300 K), if the carrier density is 2.15 x 10⁻¹³. Given μ_n = 3900 cm²/Vs and μ_n = 1900 cm²/Vs.

UNIT - V

- 10 (a) Explain ac and dc Josephson effects. What are its uses?
 - (b) Discuss any two properties of nanomaterials.

OR

11 (a) Explain any one method of synthesizing nanomaterials.

