Code: 13A54102

www.FirstRanker.com

B.Tech I Year (R13) Supplementary Examinations December 2019

MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE & IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Find the Eigen values and the corresponding of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
 - (b) Show that $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$ is Hermitian.
 - (c) Define algebraic and transcendental equations with example each.
 - (d) The value of $\int_{1}^{2} \frac{1}{x} dx$ by Simpson's 1/3 rule (taking n = 4) is_____.
 - (e) If $\frac{dy}{dx} = -y$, y(0) = 1, h = 0.01 then by Euler's method the value of y_1 is ______
 - (f) Write the Fourier series of f(x) in [C, C+2L].
 - (g) Find the Fourier cosine transform f(x) = e^{-ax}.
 - (h) Define convolution theorem.
 - Write the two dimensional Laplace equation.
 - (j) Form a partial differential equation by eliminating the arbitrary constants a and b from the equation:
 z = ax + by.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- Reduce the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ into its normal form and hence find its rank.
 - OF
- Reduce the quadratic form 3x² + 3y² + 3z² + 2xy + 2xz 2yz into canonical form using orthogonal transformation and find its rank, index and signature.

UNIT - II

- 4 (a) Using Newton-Raphson method compute √41 correct to four decimal places.
 - (b) Find the root of an equation 2x − log x = 6 by Regula-falsi method.

OR

- 5 (a) Evaluate $\int_0^1 x^3 dx$ with five sub-intervals by Trapezoidal rule.
 - (b) Evaluate $\int_{1}^{2} \frac{e^{x}}{x} dx$ using Simpson's $\frac{1}{3}$ rule for n = 4.

UNIT - III

Using Euler's method, solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1 taking step size h = 0.025.

ΛP

Find the Half range cosine series of f(x) = x(1-x) in [0,2].

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 13A54102

Find the Fourier series for $f(x)=\begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \\ \frac{-\pi}{2}, & x = 0 \end{cases}$ 8

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{\pi^2}{8}$.

(a) Find Z(n sin nθ).

(b) Find $Z^{-1}\left(\frac{z^3}{(z-3)(z-2)^2}\right), |z| > 3$.

Form the PDE by eliminating arbitrary function $f(x^2+y^2+z^2,xyz)=0$. 10

a such t A bar of length l with insulated sides is initially 0°C temperature throughout the end x = 0 is kept at 11 0°C for all time and heat is suddenly applied such that $\frac{\partial u}{\partial x} = 10$ at x = l for all time. Find the temperature function u(x,t).

