

www.FirstRanker.com

www.FirstRanker.

B.Tech I Year (R13) Supplementary Examinations December 2019

ENGINEERING PHYSICS

(Common to all branches)

Max. Marks: 70

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) What is diffraction grating?
 - (b) What is a four-level lasing system?
 - (c) What are lattice parameters?
 - (d) What is inverse piezoelectric effect?
 - (e) What are the applications of Heisenberg's uncertainty principle?
 - (f) What are the limitations of free electron theory?
 - (g) What are indirect band gap superconductors?
 - (h) What is Bohr Magneton?
 - (i) Define London penetration depth.
 - (j) What is quantum confinement?

PART – B

(Answer all five units, $5 \times 10 = 50$ Marks)

- 2 (a) Explain how to find the wavelength of given light by forming Newton's rings.
 - (b) Calculate the thickness of a soap film (μ = 1.463) that will result in constructive interference in the reflected light, if the film is illuminated normally with light whose wavelength in free space is 6000 A⁰.
 OR
- 3 (a) Discuss attenuation and losses in optical fibers.
 - (b) Calculate the refractive indices of the core and cladding material of a fibre from the following data: NA = 0.22, $\Delta \mu_r$ = 0.012, where NA is numerical aperture,

UNIT – II

- 4 (a) Explain the crystal structure of diamond.
 - (b) Calculate the inter-planar spacing for (231) plane of an FCC structure whose atomic radius is 0.175nm.

OR

- 5 (a) Explain how ultrasonics are produced by piezoelectric method.
 - (b) Write few applications of ultrasonics.

UNIT – III

- 6 (a) Derive Schrodinger's time independent wave equation.
 - (b) Evaluate the momentum and the energy of an electron confined in a box of length 1A⁰ for the ground and first excited states. Find the corresponding wavelength.

OR

- 7 (a) Derive an expression for electrical conductivity in metals.
 - (b) Electrons in a metal have a Fermi velocity of 1x10⁶ m/s. Calculate the Fermi energy for the electrons in a metal.

Contd. in page 2

Code: 13A56101

www.FirstRanker.com

www.FirstRanker.com

^{om} R13

UNIT – IV

- 8 (a) What are drift and diffusion currents? Obtain expression for drift current.
 - (b) Find the intrinsic resistivity of Ge at room temperature (300 K) if the carrier density is 2.15×10^{-13} /m³. Given that electron mobility is 3900 cm²/Vs and hole mobility is 1900 cm²/Vs.

OR

- 9 (a) State and explain hysteresis.
 - (b) A magnetizing field of 600 Am⁻¹ produces a magnetic flux of 2.4×10^{-5} Weber in an iron bar of 0.2 cm² cross-sectional area. Compute the permeability and susceptibility of the bar.

UNIT – V

- 10 (a) Explain BCS theory of super conductivity.
 - (b) The critical temperature of a given superconducting sample is 1.19K with mass 26.91. Determine the critical temperature when the isotope mass changes to 32.13.

OR

- 11 (a) Explain synthesis of nanomaterials by any method.
 - (b) Write applications of nanomaterials.

www.FirstRanker.com