B.Tech I Year (R13) Supplementary Examinations December 2019

BASIC ELECTRICAL \& ELECTRONICS ENGINEERING

(Common to CSE \& IT)
Time: 3 hours
Max. Marks: 70
Answer all the questions
(Use single answer booklet only)

PART - A

UNIT - I

1 (a) Write the equation current in a series RLC circuit for step input.
(b) An unbalanced star load of $\mathrm{Za}=5 \Omega, \mathrm{Zb}=5+j 5 \Omega$ and $\mathrm{Zc}=j 10 \Omega$ are connected to a 3-phase 3 wire 106 V system. Find the line currents take phase sequence has ACB.

OR
2 (a) Define and explain real power and reactive power in an AC circuit.
(b) A balanced star connected load of 100 kW is connected to a balanced 3-phase supplied system at 400 V and 50 Hz . The line current is taken from the supply is 150A (lagging). Find the circuit constants.

UNIT - II

3 (a) Write the equations for the two port networks connected in parallel.
(b) Determine the Y parameters of the network shown in figure below.

4 (a) State the Norton's theorem.
(b) Find the I_{L} by Norton's Theorem.

Contd. in page 2

UNIT - III

5 (a) Classify the DC machines depending upon types of excitation.
(b) The power output of a dc shunt generator is 66 A at 100 V . The efficiency of the generator at this load is 88 percent. The armature and the shunt field resistance being 0.04 and 24Ω respectively.
Calculate: (i) Copper losses.
(ii) Iron and friction losses.
(iii) Shaft power of the driving engine.

OR
6 (a) Explain the principle of operation of DC generator.
(b) The power input to a $2000 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase motor running on full load at an of 90% is measured by two watt meters method which indicate 300 kW and 100 kW respectively. Calculate: (i) The input power.
(ii) The power factor.
(iii) The line current.
(iv) The output power.

PART - B

UNIT - I

7 (a) Draw the circuit of a full wave rectifier and derive the expression for ripple factor.
(b) Bring out the differences between semiconductor diodes and Zener diode. Give the applications of Zener diode.

OR

8 (a) Explain the different current components in ap-n junction diode and hence derive the current equation.
(b) Distinguish between avalanche and Zener breakdown mechanisms.

UNIT - II

9 (a) Compare CE, CB and CC transistor configurations.
(b) Draw an n-channel FET and explain its working.

OR

10 (a) With relevant diagrams, explain the working of Enhancement MOSFET circuit.
(b) Explain the input and output characteristics of a BJT CE configuration.

UNIT - III
11 (a) Draw an LC tuned oscillator using transistors and explain.
(b) State the Barhausen criteria for oscillator operation.

OR

12 (a) Explain the working of a differential amplifier. Obtain the expressions for differential gain and common mode gain.
(b) Mention the characteristics of an Ideal operational amplifier.

