

www.FirstRanker.com

B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015

MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks) 1
 - (a) Find the sine series of f(x) = k in (0, π).
 - (b) If f(x) = x + x² in π < x < π then find a_n.
 - (c) Obtain the complete solution for p + q = sin x + sin y.
 - (d) Find a₀, f(x) = |cos x|, (-π, π).
 - (e) Find P.I of (D2-2DD') z = x³ y.
 - State one dimensional heat equation.
 - Find the Eigen values for the matrix $\begin{bmatrix} 4 & 2 \\ -5 & 3 \end{bmatrix}$ (g)
 - Write condition for the system AX = B is consistent
 - Find the rank of 4
 - Using Euler's method find the solution of the initial problem $\frac{dy}{dx} = \log(x + y)$, y(0) = 2 at x = 0.2 by assuming

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form. Also specify the matrix 2 of transformation.

State and prove Cayley-Hamilton theorem. 3

UNIT 4

Find the root of $x \log_{10} x - 1.2 = 0$ by Newton Raphson method corrected to three decimal places.

Evaluate $\int_{0}^{1} xe^{x} dx$ taking 4 intervals. Using (i) Trapezodial rule. (ii) Simpson's 1/3 rd rule. 5

UNIT - III

Use fourth order Runge-Kutta method to compare y for x = 0.1, given $\frac{dy}{dx} = \frac{xy}{1+x^2}$, y(0) = 1 take h = 0.1. 6

7 Find the Half range Fourier sine series $f(x) = x(\pi - x)$ $0 \le x \le \pi$ and hence deduce that: (i) $\sum_{n=1}^{\infty} \frac{1}{n \le n}$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6} = \frac{\pi^6}{960}$$

UNIT - IV

Find the Fourier cosine transform of $f(x) = e^{-x^2}$. 8

Solve Z-transform $y_{k+1} + \frac{1}{4}y_k = (\frac{1}{4})^k$, $(k \ge 0)$, y(0) = 0. 9

UNIT - V

10 Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3\sin(n\pi x)$, u(x,t) = 0, u(a,t) = 0, where 0 < 0x < 1, t > 0

A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position given by y = 0 $y_0 \sin^3(\pi x/l)$, if it is selected from rest from this position, find the displacement y(x,t).

Ranker.com www.FirstRanker.com

