# B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015 BASIC ELECTRICAL \& ELECTRONICS ENGINEERING 

(Common to CSE and IT)
Time: 3 hours
Answer all the questions
*****
PART - A

## UNIT - I

1 (a) Write short notes on star-delta transformation. Derive the necessary equations.
(b) A resistance of $50 \Omega$, an inductance of 0.5 H and a capacitance of $50 \mu \mathrm{~F}$ are connected in series across $220 \mathrm{~V}, 50 \mathrm{~Hz}$ mains. Determine: (i) Impedance of the circuit. (ii) Current taken from the mains. (iii) Power and power factor of the circuit.

OR
2 Explain in detail the active elements and passive elements.
UNIT - II
3 (a) State Millmann's theorem and Tellegon's theorem.
(b) Find the transmission parameters for the resistance network shown in figure below.


OR
4 (a) Derive expression for the $Y$ parameters in terms of $Z$ parameters.
(b) Find Hybrid parameters for the following network.


5 (a) Explain the principle of operation of 3-phase induction motors.
(b) Explain the characteristics and applications of DC motor.

OR
6 (a) Derive the emf equation of DC generator.
(b) Explain the constructions details of 3-phase induction motor.

## PART - B

## UNIT - I

7 (a) Draw the forward characteristics of the semiconductor diode and explain the nature of variation with reference to the equation for forward current of the diode.
(b) A PN junction diode has a reverse saturation current of $5 / \mu \mathrm{A}$ at $25^{\circ} \mathrm{C}$. Determine its static and dynamic resistance for a forward bias of 0.2 V at $75^{\circ} \mathrm{C}$.
(c) Discuss the features that are responsible for maintaining constant voltage across the load in simple voltage regulator circuit using a zener diode.

## OR

8 (a) With the help of necessary graphs and sketches explain the potential distribution in an open circuited p -n junction.
(b) In a full wave rectifier the required DC voltage is 9 V and the diode drop is 0.8 V , calculate ac rms input voltage required in case of bridge rectifier circuit and center tapped full wave rectifier circuit.
(c) Distinguish between drift current and diffusion current.

Contd. in page 2
www.FirstRanker.com
Code: 13A99101

## UNIT - II

9 (a) Show the various regions of operation on the output characteristics of a CE transistor and explain their significance in the use of transistor as an amplifying device.
(b) Define the different parameters of FET.
(c) Draw a circuit diagram with biasing voltages to obtain the drain characteristics and the transfer characteristics of N -channel depletion enhancement MOSFET device.

OR
10 (a) Define stability factor. Why is it necessary for a BJT circuit? Derive the relation between $\alpha \& \beta$.
(b) Explain how FET works as voltage variable resistor. Differentiate FET and MOSFET.

## UNIT - III

Draw the circuit diagram of a RC phases shift oscillator using BJT and derive the expression for frequency of oscillations.
Describe the operation of an Op - Amp based differentiator.
OR
12 (a) The gain of an amplifier is decreased to 1000 with negative feedback from its gain of 5000 . Calculate the feedback factor and the amount of negative feedback in dB.
(b) Derive closed loop voltage gain, input resistance, output resistance and band width for Op-amp inverting amplifier with feedback arrangement.

