

www.FirstRanker.com

www.FirstRanker.com

R13

Code: 13A02101

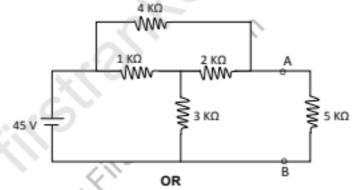
B.Tech I Year (R13) Regular Examinations June/July 2014

ELECTRICAL CIRCUITS

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

Part – A (Compulsory Question)


Answer the following:(10 X 02 = 20 Marks)

- 1 (a) What is passive element? Give examples for passive elements.
 - (b) Define and explain coefficient of coupling.
 - (c) Define the terms RMS value and form factor.
 - (d) If R_o, R_b, R_c connected in star, write down the expressions for equivalent delta connection.
 - (e) Define the band width and Q-factor.
 - (f) Write short notes on Tieset and cutset.
 - (g) State the Milliman's theorem.
 - (h) Define and explain two port networks.
 - (i) Define the time constant of RL and RC circuits.
 - Write down any two applications of Fourier transforms.

Part – B (Answer all five units, 05 X 10 = 50 Marks)

UNIT - I

- 2 (a) Derive an expression for total inductance of two coupled coils connected in:
 - (i) series aiding mode and
 - (ii) series opposing mode.
 - (b) Find the current through each element in the network as shown in figure given below using star delta transformation.

- 3 (a) Explain in detail about the active elements.
 - (b) In a coupled circuit L₂ = 4L₁ and coupling coefficient K = 0.6. When L₁ and L₂ are connected in series opposing the equivalent inductance is 44.2 mH. Find L₁, L₂ and M.

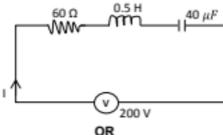
UNIT - II

- 4 (a) Derive the expression for form factor a sinusoidal voltage wave excited by V = V_m Sinωt.
 - (b) A sinusoidal current wave is given by I = 50sin100πt. Determine:
 - (i) The greatest rate of change of current.
 - (ii) Average and rms values of current.
 - (iii) The time interval between a maximum value and the next zero value of current.

OR

- 5 (a) Show that two wattmeters are sufficient to measure power in a balanced or unbalanced three-phase load connected to a balanced supply with neat circuit diagram.
 - (b) A balanced mesh connected load of (8+j6)Ω per phase is connected to a 3-phase, 50 Hz, 230 V supply. Calculate:
 - (i) Line current.
 - (ii) Power factor.
 - (iii) Reactive volt-ampere.
 - (iv) Total volt-ampere.

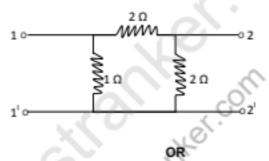
Contd. in page 2

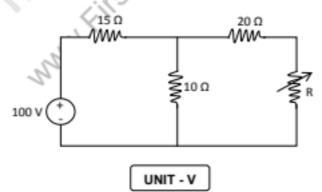

www.FirstRanker.com

www.FirstRankercom

Code: 13A02101

UNIT-III


- 6 (a) What is duality? Write down the procedure to obtain dual network by taking any one example.
 - (b) A series RLC circuit shown in figure R = 60 ohms, L = 0.5 H and C = 40 μF is connected across an AC variable frequency supply of 200 V. Calculate the resonant frequency and lower and upper half frequencies.


- (a) Define and explain bandwidth, Q-factor, cutset, tieset and tree.
 - (b) A coil having an inductance of 50 mH and resistance 10 Ω is connected in series with a 25 μF capacitor across 200 V AC supply. Calculate:
 - Resonant frequency of the circuit.
 - (ii) Current flowing at resonance.
 - (iii) Quality factor.

UNIT - IV

- 8 (a) State and explain Thevinen's theorem.
 - (b) Find the Z parameters for the resistance network shown in figure given below.

- 9 (a) Derive the expressions for hybrid parameters in terms of admittance parameters.
 - (b) In the circuit shown in figure given below, find the value of adjustable resistor R for maximum power transfer to R. Also calculate the maximum power.

- 10 (a) Derive the expression for exponential form of Fourier series. Mention the application of Fourier transform.
 - (b) A series RLC circuit has R = 50 Ω, L = 0.2 H and C = 50 μF constant voltage of 100 V is impressed upon the circuit at t = 0. Find the expressions for the transient current assuming initially relaxed conditions.

OR

- 11 (a) Explain the properties of Fourier transforms.
 - (b) A series RL circuit with R = 10 Ω, L = 0.2 H has a constant voltage of a V = 50 V applied at t = 0. Find the time response of the current.