B.Tech I Year (R13) Supplementary Examinations December 2019
 NETWORK ANALYSIS
 (Common to ECE \& EIE)

Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Write the tie-set matrix of the circuit shown in figure below.

(b) Draw the Thevenin equivalent resistance for the given network.

(c) A resistor in parallel with a capacitor absorbs 20 W when the combination is connected to a 240 V , 50 Hz source. If the power factor is 0.7 leading, what are the resistance and capacitance?
(d) If a coil draws 0.5 A from a $120 \mathrm{~V}, 60 \mathrm{~Hz}$ source at 0.7 lagging power factor, what are the coil resistance and inductance?
(e) Determine the quality factor of a RLC series circuit $R=10 \Omega, C=100 \mu F$ and $L=0.01 \mathrm{mH}$.
(f) What values of inductor is to be used in a tank circuit to get a resonant frequency of 10 kHz and bandwidth of 1 kHz ? The winding resistance is 30Ω.
(g) Define the Z parameters.
(h) Define ideal filter.
(i) Give the relation between Decibel and Nepers.
(j) Design a constant- K low pass filter (T-section and π section) having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 500Ω.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) Obtain the current I_{x} by Thevenin's theorem .

(b) Calculate the current through R_{l} of the network using superposition theorem.

3 (a) A resistive network shown in figure, setup corresponding tie-set matrix and obtain KVL equation.

(b) A voltage source delivers 4 A when the load connected is 5Ω and 2 A when the load is 20Ω. What is the maximum power it can deliver, power transfer efficiency when it delivers 50 W ?

UNIT - II

4 (a) Calculate the currents $i_{1}(t)$ and $i_{2}(t)$ of the circuit shown. Assume initially relaxed condition and the switch is closed at $\mathrm{t}=0$.

(b) Three coils are connected in series. Derive the expression for the equivalent inductance.

OR
In the circuit shown, the initial value of the charge on the capacitor is 20 V . Calculate: (i) $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$. (ii) Time constant.

Contd. in page 3

Code: 13A04101

UNIT - III

6 (a) A coil of 10 H and resistance of 10Ω is in with 100 pF capacitor. The combination is connected across a generator of 100 V , having internal resistance of $100 \mathrm{k} \Omega$. Determine: (i) Voltage across parallel circuit at resonance. (ii) Bandwidth.
(b) Derive the expression for resonant frequency for a tank circuit.

OR

7 (a) In a series resonant circuit the resistance is 6Ω, the resonant frequency is $4.1 \times 10^{6} \mathrm{rad} / \mathrm{sec}$ and the bandwidth is $10^{5} \mathrm{rad} / \mathrm{sec}$. Compute L and C of the network, half power frequencies and Q of the circuit.
(b) Distinguish between reactance, impedance, admittance and suceptance.

UNIT - IV

8 (a) For the bridged T network shown, find the driving point admittance y_{11} and transfer admittance y_{21} with a 2Ω load resistor connected across port 2.

(b) For the hybrid equivalent circuit shown, determine the current gain and voltage gain.

Find the z parameters for the circuit shown in figure below.

(a) Design a m-derived low pass filter having cut-off frequency of 2 kHz , design impedance of 500Ω and the resonant frequency 2100 Hz .
(b) Design a constant-k high pass filter having a cut-off frequency of 1 kHz with a load resistance of 700Ω.

OR
11 Design a m-derived high pass filter with a cut-off frequency 5 kHz ,design impedance 500Ω and

