Code: 13A54101

B.Tech I Year (R13) Supplementary Examinations December 2019

MATHEMATICS - I

(Common to all branches)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Solve $(x^2 y^2)dx = 2xydy$.
- (b) Solve the differential equation : $(D^4 2D^3 + 2D^2 2D + 1)y = 0$
- (c) Solve the differential equation: $(x^2D^2 3xD + 1)y = 0$.
- (d) If $U = \log(x^3 + y^3 + z^3 3xyz)$ then find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$.
- (e) If $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial(x, y)}{\partial(r, \theta)}$?
- (f) If $f(x, y) = x^3 + 3xy^2 3x^2 3y^2 + 4$ then find critical points.
- (g) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{(1-x^2)(1-y^2)}} dxdy$.
- (h) Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dxdydz$.
- (i) Find $Curl \ \overline{F}$ for $\overline{F} = z\overline{i} + x\overline{j} + y\overline{k}$.
- (j) State Gauss divergence theorem.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Solve $(D^4 + 2D^2 + 1)y = e^x \cos x$.
 - (b) Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a parameter.

OR

- 3 (a) Solve $(D^2 2D + 1)y = x e^x \sin x$.
 - (b) Using method of variation of parameter Solve $(D^2 + 4)y = \tan 2x$.

UNIT – II

- 4 (a) Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$.
 - (b) Find the coordinates of the centre of curvature at $(at^2, 2at)$ on the parabola $y^2 = 4ax$.

OF

- 5 (a) Find the maximum and minimum values of $x^3 + 3xy^2 15x^2 15y^2 + 72x$.
 - (b) Find C of Cauchy's Mean Value theorem for $f(x) = \sin x$, $g(x) = \cos x$ in a, b.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 13A54101

UNIT - III

- 6 (a) Trace the curve $y^2 (a x) = x^2 (a + x)$.
 - (b) Find the surface area of the solid of revolution of one loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line.

OR

- 7 (a) Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$.
 - (b) By changing the order of integration , evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy \, dx$.

UNIT - IV

- 8 (a) Find the Laplace transform of: (i) $\left\{\frac{\sin 3t \cdot \cos t}{t}\right\}$. (ii) $\left\{t^2 \sin 2t\right\}$.
 - (b) Apply Convolution theorem to find $L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$.

OR

- 9 (a) Find the Laplace transform of e^{-3t} (2 cos 5t 3 sin 5t).
 - (b) Solve the D.E y'' 2y' 8y = 0, y(0) = 3, y'(0) = 6. Using Laplace transform.

UNIT - V

- 10 (a) Find the directional derivative of $xyz^2 + xz$ at (1, 1, 1) in the direction of i + 2j + 3k.
 - (b) Verify Green's theorem for $\int_{C} [(xy + y^{2})dx + x^{2} dy]$ where C is bounded by y = x and $y = x^{2}$.

OR

Verify Gauss divergence theorem for $\overline{F}=4xy\overline{i}-y^2\overline{j}+4z\overline{k}$ where S is the surface of the cube bounded by x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.