www.FirstRanker.com www.FirstRanker.com Code: 15A56101 B.Tech I Year I Semester (R15) Supplementary Examinations June 2017 ### **ENGINEERING PHYSICS** (Common to CE, EEE & CSE) Time: 3 hours Max. Marks: 70 ### PART - A (Compulsory Question) Note: Physical constants: Planck's constant: $h = 6.63 \times 10^{-34}$ Js, Mass of the electron = 9.1 x 10^{-31} kg, Charge of the electron = 1.6 x 10^{-19} C Boltzmann's constant $k_B = 1.38 \times 10^{-27}$ JK⁻¹, Permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ Hm^{-1} **** - 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$ - (a) State working principle of semiconductor diode laser. - (b) What is diffraction? What is the impact of increasing number of slits on diffraction pattern? - (c) List different types of crystal systems. - (d) Draw the block diagram of non-destructive testing of specimen. - (e) Give two reasons to prove that the matter waves are not electromagnetic waves. - (f) Represent graphically the probability distribution of electrons in metal at T = 0 K and T > 0K. - (g) Draw the energy band diagram of extrinsic semiconductor and represent the position of Fermi level. - (h) What are the origins for the magnetic moment in an atom? - (i) What is Josephson effect? Write any two applications. - (j) How does top-down approach different from bottom-up approach? ### PART - B (Answer all five units, 5 X 10 = 50 Marks) # UNIT-I Derive an expression for energy density of radiation in terms of Einstein's A & B coefficient for two level systems & obtain the condition for laser action. #### OR - 3 (a) What is fiber loss? Mention the factors for the fiber loss and explain them briefly. - (b) An optic glass fiber of refractive index 1.50 is to be clad with another glass to ensure total internal reflection that will contain light travelling within 5° of the fiber axis. What maximum index of refraction is allowed for the cladding? ## (UNIT - II) With neat diagram, explain the construction and working of Debye-Scherer method (powder method) and discuss how to determine interplanar spacing of the crystal. #### OR - 5 (a) What are ultrasonic waves? Mention their properties and applications. - (b) The results of the X-ray diffraction investigation shows that, for a given crystal, two successive orders of reflection maxima occurs at the glancing angle of 8°58^l and 12°1^l. Evaluate the order of reflection corresponding to the glancing angle of 18°12^l. Contd. in page 2 www.FirstRanker.com www.FirstRanker.com Code: 15A56101 [UNIT - III] - Setup time-independent Schrodinger wave equation of a particle in motion. 6 (a) - (b) Calculate the wavelength associated with an electron subjected to a potential difference of 1.25 kV. - What is energy bond? Explain the formation of energy bond due to the interaction of atoms in sodium 7 metal. - Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K (b) in a metal. UNIT - IV - 8 (a) What are hard and soft magnetic materials? Mention their properties based on hysteresis loop and mention the applications. - Diamagnetic material Al_2O_3 is subjected to an external magnetic field of 10^5 Am⁻¹. Evaluate magnetization and magnetic flux density in Al_2O_3 . Given: Susceptibility of Al_2O_3 is 5 x 10⁵. - 9 (a) What is drift current? Derive an expression for drift current in case of semiconductor. - (b) A silicon plate of thickness 1 mm, breadth 10 mm and length 100 mm placed in magnetic field of 0.5 Wbm⁻² acting perpendicular to its thickness. If 10⁻²A current flows along its length, calculate hall voltage developed if the hall coefficient is 3.66 x 10⁻⁴ m³c⁻¹. UNIT - V - (a) What is Meissner effect? Show that a superconductor behaves as diamagnetic material. 10 - (b) The critical fields for sample are 1.4 x 10⁵ and 4.2 x 110⁵ Am⁻¹ at 14K & 13K respectively. Find the transition temperature of the sample. OR - (a) What are nanomaterials? Find surface-to-volume ratio when 1 cm cubical object reduces to 1 mm 11 cubical object. Mention its significance. - Discuss how the synthesis of nanomaterials is done using ball mill technique. MUM Files Registration