(Common to all branches)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
$* * * * *$
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Define an ordinary differential equation with example.
(b) Find the general solution of $\left(4 D^{2}+4 D+1\right) y=0$
(c) To solve the D.E $\left(D^{2}+a^{2}\right) y=\tan a x$ by the method of variation of parameters find ' B ' when P.I $=A x+B x$.
(d) Transform the Caucy's homogeneous differential equation $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$ into a linear differential equation with constant coefficients.
(e) If $u=x^{2}+y^{2}+z^{2}, x=e^{t}, y=e^{t}$ sint, $z=e^{t}$ cost then find $\frac{d u}{d t}$.
(f) If $x=r \cos \theta, y=r \sin \theta$, then find $J\left(\frac{x, y}{r, \theta}\right)$
(g) Evaluate $\int_{0}^{2} \int_{0}^{x}(x+y) d y d x$.
(h) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.
(i) If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ then find div \bar{f} at $(1,-1,1)$.
(j) State the Gauss divergence theorem.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

(a) Solve $\left(x^{2}-a y\right) d x+\left(y^{2}-a x\right) d y=0$.
(b) Solve $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$

$$
20 \mathrm{R}
$$

3 (a) A bacterial culture, growing exponentially increases from 200 to 500 grams in the period from 6 a.m to 9 a.m. How many grams will be present at noon?
(b) If a voltage of $20 \operatorname{Cos} 5$ t is applied to a series circuit consisting of 10 ohm resistor and 2 Henry inductor, determine the current at any time t .

UNIT - II

4 Solve $\left(x^{2} D^{2}+3 x D+1\right) y=\frac{1}{(1-x)^{2}}$.
OR
5 A horizontal tie-rod is freely pinned at each end. It carries a uniform load w/b per unit length and has a horizontal pull P. Find the central deflection and the maximum bending moment taking the origin at one of its ends.

UNIT - III

6 (a) Verify Taylor's theorem for $f(x)=(1-x)^{5 / 2}$ with Lagranges form of remainder 2 terms in the interval [0,1].
(b) If $u=\frac{y z}{x}, v=\frac{z x}{y}, w=\frac{x y}{z}$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=4$.

OR
7 (a) Examine for minimum and maximum values of $\sin x+\sin y+\sin (x+y)$.
(b) Find the radius of curvature of the curve $x^{2} y=a\left(x^{2}+y^{2}\right)$ at (-2a, 2a).

Code: 15A54101

UNIT - IV

8 (a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x^{2} y^{2}(x+y) d y d x$.
(b) Evaluate $\int_{1}^{e} \int_{0}^{\log y} \int_{1}^{e^{x}} \log z d z d x d y$

OR
9 (a) Find the whole area of the lemniscates $r^{2}=a^{2} \cos 2 \theta$.
(b) Find the volume bounded by the $x y$ plane, the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=3$.

UNIT - V

10 (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2,1,2).
(b) Use divergence theorem to evaluate $\iint_{S} \bar{F}$.ds where $\bar{F}=4 x \bar{i}-2 y^{2} \bar{j}+z^{2} \bar{k}$ and S is the surface bounded by the region $x^{2}+y^{2}=4, z=0$ and $z=3$ and $z=3$.

OR
11
Verify stokes theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \bar{i}-2 x y \bar{j}$ taken round the rectangle bounded by the lines $x= \pm a, y=0, y=b$.

Page 2 of 2

