

www.FirstRanker.com

www.FirstRanker.com

R15

Code: 15A54101

B.Tech I Year I Semester (R15) Regular & Supplementary Examinations December 2016

MATHEMATICS - I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) Find the orthogonal trajectories of the family of parabolas through the origin and foci on the y axis.
- (b) Find the complementary function (D³ + 2D)y = e^{2x} + cos(3x + 7).
- (c) $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} = 0$ has the general solution
- (d) Find P.I($\theta^2 4\theta + 1$)⁻¹ sin z.
- (e) If u = e^{x+y}, v = e^{-x+y}, then find J.
- (f) Find the radius of curvature at any point of the cardioids $s=4 \, a sin \frac{\psi}{3}$.
- (g) $\int_{D} \int (x^2 + y^2) dxdy =$ ______ D: $y = x, y^2 = x$.
- (h) Evaluate ∫₀¹ dx ∫₁² dy ∫₁³ xyzdz.
- (i) ∇ × (∇ × Ā) is_____
- (j) Evaluate $\int_{c} y^{2} dx 2x^{2} dy$ along the parabola $y = x^{2}$ from (0, 0) to (2, 4).

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 Solve: $x(x-1)\frac{dy}{dx} - y = x^2(x-1)^3$.

OR

3 Solve: $(D^3 + 2D^2 - 3D)y = xe^{3x}$.

DNIT - II

Solve: (D² + a²)y = tan ax by the method of variation of parameters.

OR

The deflection y of a strut of length l with one end built-in and other end subjected to the end thrust P, satisfies $\frac{d^2y}{dx^2} + a^2y = \frac{a^2R}{P}(1-x)$. Find the deflection y of the strut at a distance x from the built-in end.

UNIT - III

- 6 (a) If $u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$ then show that $xu_x + yu_y = 3 \tan u$.
 - (b) If u = x + y + z, uv = y + z, uvw = z, then prove $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$.

or

- 7 (a) Find the points on the surface z² = xy + 1 nearest to the origin.
 - (b) Find the radius of curvature at (3,3) on the curve x³ + xy² 6y² = 0.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

R15

Code: 15A54101

UNIT - IV

8 Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dxdy$ by changing the order of integration.

OR

9 Evaluate $\iint xy^2z dx dy dz$ taken through the positive octant of the sphere: $x^2 + y^2 + z^2 = a^2$.

UNIT - V

10 (a) Find the directional derivative of f = xy + yz + zx in the direction of vector \(\overline{i} + 2\overline{j} + 2\overline{k}\) at the point (1, 2, 0).

(b) Find curl f where f = grad (x³ + y³ + z³ - 3xyz).

OR

Evaluate by Green's theorem $\oint_c (y - \sin x) dx + \cos x dy$ where C is triangle enclosed the lines $y = 0, x = \frac{\pi}{2}, \pi y = 2x$.

MANN FIRST Ranker Com

