B.Tech I Year II Semester (R15) Supplementary Examinations December 2019

MATHEMATICS - II

(Common to all)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) State and prove first shifting theorem.
(b) Evaluate $\int_{0}^{\infty} t e^{-2 t} \sin t d t$.
(c) If $f(x)=x+x^{3}$ in $(-\pi, \pi)$, find the Euler's coefficients $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{n}}$.
(d) State the conditions for $\mathrm{f}(\mathrm{x})$ to have Fourier series expansion.
(e) Find the Fourier sine transform of the function $f(x)=5 e^{-2 x}+2 e^{-5 x}$.
(f) Find the Fourier transform of the function $f(x)=\left\{\begin{array}{l}x^{2},|x| \leq a \\ 0,\end{array}|x|>a\right.$.
(g) Write down possible solutions of the Laplace equation.
(h) A rod 20 cms long has its ends A and B kept at $30^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ respectively until steady state is prevailed. Determine the steady state temperature of the rod.
(i) Find $Z\left\lceil\frac{1}{n-1}\right\rceil$.
(j) State final value theorem on Z-transform.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Use convolution theorem to find $L^{-1}\left(\frac{1}{s^{2}(s+1)^{2}}\right)$.
(b) Find the Laplace transform of the square wave function of period α defined as:

$$
f(t)=\left\{\begin{array}{l}
1, \text { when } 0<t<\alpha / 2 \\
-1, \text { when } \frac{\alpha}{2}<t<\alpha
\end{array}\right.
$$

OR
3 Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$ given $\mathrm{y}(0)=0, y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=6$.

UNIT - II

Find the complex form of the Fourier series of $f(x)=e^{-x}$ in $-1 \leq x \leq 1$
OR
Obtain the Half Range cosine series of $f(x)=x$ in $0<x<1$. Hence deduce that $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\cdots=\frac{\pi^{4}}{96}$.

UNIT - III

6
Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<1 \\ 0,\end{array}|x|>1\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
OR
7 (a) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$.
(b) Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}}$.

Code: 15A54201

UNIT - IV

8 A tightly stretched string of length l with fixed end is initially in its equilibrium position. It is set vibrating by giving each point a velocity $V_{0} \sin ^{3}(\pi x / l)$. Determine the displacement function $\mathrm{y}(\mathrm{x}, \mathrm{t})$. OR
An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π; this end is maintained at a temperature u_{0} at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.

UNIT - V
10 (a) Using convolution theorem, find the inverse Z-transform of $\frac{z^{2}}{(z-1)(z-3)}$.
(b) Find $z^{-1} \frac{2 z}{(z-1)\left(z^{2}+1\right)}$, by partial fraction method.

OR
11
Solve: $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ given that $y_{0}=0$ and $y_{1}=0$, using Z-transforms.

