FirstRanker.com

www.FirstRanker.com

www.FirstRanker.Rn 5

B.Tech I Year II Semester (R15) Supplementary Examinations December 2019

MATHEMATICS – II

(Common to all)

Max. Marks: 70

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) State and prove first shifting theorem.
 - (b) Evaluate $\int_0^\infty t e^{-2t} \sin t \, dt$.
 - (c) If $f(x) = x + x^3$ in $(-\pi, \pi)$, find the Euler's coefficients a_0, a_n .
 - (d) State the conditions for f(x) to have Fourier series expansion.
 - (e) Find the Fourier sine transform of the function $f(x) = 5e^{-2x} + 2e^{-5x}$.
 - (f) Find the Fourier transform of the function $f(x) = \begin{cases} x^2, |x| \le a \\ 0, |x| > a \end{cases}$
 - (g) Write down possible solutions of the Laplace equation.
 - (h) A rod 20 cms long has its ends A and B kept at 30°C and 70°C respectively until steady state is prevailed. Determine the steady state temperature of the rod.

(i) Find
$$Z\left[\frac{1}{n-1}\right]$$
.

(j) State final value theorem on Z-transform.

$$\begin{array}{c} \textbf{PART} - \textbf{B} \\ \text{(Answer all five units, 5 X 10 = 50 Marks)} \end{array}$$

UNIT – I
2 (a) Use convolution theorem to find
$$L^{-1}\left(\frac{1}{s^2(s+1)^2}\right)$$
.

(b) Find the Laplace transform of the square wave function of period α defined as: $f(t) = \begin{cases} 1, when \ 0 < t < \alpha/2 \\ \alpha & \alpha < t < \alpha/2 \end{cases}$

$$f(t) = \left\{-1, when \ \frac{\alpha}{2} < t < \alpha\right\}$$

Solve
$$y''' + 2y'' - y' - 2y = 0$$
 given $y(0) = 0$, $y'(0) = 0$ and $y''(0) = 6$.

- 4 Find the complex form of the Fourier series of $f(x) = e^{-x}$ in $-1 \le x \le 1$ OR
- 5 Obtain the Half Range cosine series of f(x) = x in 0<x<1. Hence deduce that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = \frac{\pi^4}{96}$.

UNIT – III

OR

- 6 Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.
- 7 (a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. (b) Using Parseval's identity, evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+1)^2}$.

Contd. in page 2

FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Code: 15A54201

UNIT – IV

8 A tightly stretched string of length *l* with fixed end is initially in its equilibrium position. It is set vibrating by giving each point a velocity $V_0 \sin^3(\pi x/l)$. Determine the displacement function y(x, t).

OR

9 An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π ; this end is maintained at a temperature u_0 at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.

UNIT – V

- 10 (a) Using convolution theorem, find the inverse Z-transform of $\frac{z^2}{(z-1)(z-3)}$.
 - (b) Find $z^{-1} \frac{2z}{(z-1)(z^2+1)}$, by partial fraction method.
- 11 Solve: $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given that $y_0 = 0$ and $y_1 = 0$, using Z-transforms.

www.firstRanker.com