B.Tech I Year II Semester (R15) Regular \& Supplementary Examinations May/June 2019

ELECTRICAL CIRCUITS - I

(Electrical \& Electronics Engineering)
Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) An incandescent lamp is rated for $110 \mathrm{~V}, 100 \mathrm{~W}$. Using a suitable resistor how you can operate this lamp on 220 V mains.
(b) Define self-inductance and mutual inductance of a coil.
(c) Define form factor and peak factor.
(d) A voltage of 100 V is applied to a capacitor of $12 \mu \mathrm{~F}$. The current is 0.5 A . What must be the frequency of supply?
(e) What is the resonant frequency and bandwidth of a series RLC circuit whose $R=5 \Omega, L=40 \mathrm{mH}$ and $C=1 \mu \mathrm{~F}$.
(f) In a series RLC circuit, if the value of L and C are 10 mH and $0.1 \mu \mathrm{~F}$, determine the value of R to give critical damping.
(g) A load is connected to a network of the terminals to which load is connected, $R_{t h}=10 \Omega$ and $\mathrm{V}_{\mathrm{th}}=40 \mathrm{~V}$. Calculate the maximum power supplied to the load.
(h) List the applications of Norton's theorem.
(i) A two port network is characterized by $V_{1}=8 I_{1}+6 I_{2}$ and $V_{2}=10 I_{1}+6 I_{2}$. Find the transmission parameters A and C .
(j) When a two port network is said to be reciprocal?

> PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 For the network shown in figure below, find the equivalent resistance between the terminals M and N .

For the circuit shown below, determine the current supplied by the 12 V d.c source.

UNIT - II

A 20Ω resistor and a 30 mH inductor are connected in series across a $300 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c supply. Find: (i) Impedance of the circuit. (ii) Voltage across the resistor. (iii) Voltage across the inductor. (iv) Apparent power. (v) Active power. (vi) Reactive power.

OR

Two impedances $(15-j 10) \Omega$ and $(10+j 15) \Omega$ are connected in parallel. The supply voltage is 200 V , 50 Hz . Calculate: (i) Admittance. (ii) Conductance. (iii) Susceptance. (iv) Total current. (v) Total power.

UNIT - III

A coil of resistance 40Ω and inductance 0.75 H forms part of a series circuit for which the resonant frequency is $55 \mathrm{c} / \mathrm{s}$. If the supply is $250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Find: (i) Line current. (ii) Power factor. (iii) Voltage across the coil.

OR

Derive the expression for resonant frequency and bandwidth for a series RLC resonant circuit.
UNIT - IV
Find the current in the 2Ω resistor between A and B for the network shown below using Super Position theorem.

Determine the current flowing through the 10Ω resistor by using Thevenin's theorem.

Obtain the admittance parameters of the network shown in figure below.

Find the h-parameter for the network shown below.

