

www.FirstRanker.com

www.FirstRanker.**R15**

B.Tech I Year II Semester (R15) Regular & Supplementary Examinations May/June 2019 NETWORK ANALYSIS

(Common to ECE & EIE)

Time: 3 hours

Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Determine the voltage drop across the 10Ω resistance in the circuit shown in figure.

- (b) State maximum power transfer theorem.
- (c) Distinguish between natural and forced response.
- (d) Write the differences between RL and RC transient circuits.
- (e) If the phase angle θ is 45°, what is the power factor?
- (f) Define instantaneous power and average power.
- (g) Determine the resonant frequency for the circuit shown in figure below.

- (h) Illustrate the concept of mutual inductance.
- (i) For a given $Z_{11}=3\Omega$, $Z_{12}=1\Omega$, $Z_{21}=2\Omega$ and $Z_{22}=1\Omega$, find the admittance matrix and the product of Δ_y and Δ_z .
- (j) For a two port network, define and relate Decibel and Neper.

PART - B(Answer all five units, 5 X 10 = 50 Marks) UNIT - I

2 By applying the superposition theorem determine the node voltage V_1 and V_2 for the network shown in figure.

www.FirstRanker.com

www.FirstRanker. R15

3 Determine the current flowing through 1.5 Ω resistor in the circuit shown in figure by loop analysis.

4 (a) A series RL circuit with R = 30Ω and L = 15H has a constant voltage V = 60V applied at t = 0 as shown in figure below.

Determine the current I, voltage across the resistor and inductor.

anker.com

Code: 15

(b) In the given circuit shown in figure below, the switch k is closed at time t = 0, the steady state condition having reached preciously. Obtain the expression for the current in the circuit at any time t. If $R_1 = R_2 = 100\Omega$, $\nu = 10\nu$ and L = 1H, calculate at time t = 5 ms (i) Current I. (ii) Voltage drop across R_2 . (iii) Voltage across L.

- 5 (a) An RL series circuit is excited by a sinusoidal source e(t) = 10sin100t volts, by closing the switch at t = 0. Take R = 10 Ω and L = 0.1H. Determine the current i(t) flowing through the RL circuit.
 - (b) For the circuit shown in figure below, find the current equation when the switch is opened at t = 0.

Contd. in page 3

Code: 15A04201

www.FirstRanker.com

www.FirstRanker.com

°^m R15

UNIT – III

6 With necessary derivations, illustrate the concept of instantaneous power, average power, apparent power and reactive power.

OR

- 7 (a) For the circuit shown in figure below, find:
 - (i) Real power dissipated by each element.
 - (ii) The total apparent power supplied by the circuit.
 - (iii) The power factor of the circuit

(b) Two impedances $Z_1 = 10 \angle -60^{\circ}\Omega$ and $Z_2 = 10 \angle -70^{\circ}\Omega$ are in series and pass an effective current of 5A. Determine the active power, reactive power, apparent power and power factor.

8 (a) Find the value of L at which the circuit resonates at a frequency of 1000 rad/sec in the circuit shown in figure below.

(b) A 50Ω resistor is connected in series with an inductor having internal resistance, a capacitor and 100 V variable frequency supply as shown in figure below. At a frequency of 200 Hz, a maximum current of 0.7A flows through the circuit and voltage across the capacitor is 200 V. Determine the circuit constants.

OR

- 9 (a) Derive the relation between bandwidth and quality factor.
 - (b) Analyze ideal transformer circuits.

10 Derive the Z-parameters of two port network. Relate Y, h and ABCD parameters with Z-parameter.

OR

- 11 (a) Derive the characteristic impedance of T-network.
 - (b) Design a low pass filter (both π and T sections) having cut off frequency of 2 kHz to operate with a load resistance of 500 Ω .