www.FirstRanker.com
B.Tech I Year II Semester (R15) Supplementary Examinations November 2017

ENGINEERING MECHANICS

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
Answer the following: ($10 \times 02=20$ Marks $)$
(a) Write down the equations to be satisfied for a system to ensure equilibrium of a concurrent, non-coplanar forces.
(b) Explain different types of supports and its reaction with simple schematic sketches.
(c) Explain the meaning of coefficient of friction.
(d) Define the term angle of repose.
(e) Define center of gravity and center of mass.
(f) Justify the statement that all centroidal axes are not axes of symmetry.
(g) What is a projectile?
(h) What is a curvilinear motion and give an example?
(i) What is an Imperfect frame?
(j) Is it possible to completely remove the vibrations of a system? Justify your answer.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Three external forces are acting on a L-shaped body as shown in figure below. Determine the equivalent system through point O .

OR
A beam AB 6 m long is loaded as shown in figure below. Determine the reactions at A and B.

Contd. in page 2

A body of weight 500 N is pulled up an inclined plane, by a force of 350 N . The inclination of the plane is 30° to the horizontal and the force is applied parallel to the plane. Determine the coefficient of friction.

OR
In a differential screw jack, the screw threads have pitch of 10 mm and 7 mm . If the efficiency of the machine is 28%, find the effort required at the end of an arm 36 cm long to lift a load of 5 kN .

UNIT - III
Find the centre of gravity of the section given in the figure below.

Determine the second moment of area of the channel section shown in figure below, about centroidal axis $x-x$ and $y-y$.

UNIT - IV
A force of 200 N acts on a body having mass of 300 kg for 90 seconds. If the initial velocity of the body is $20 \mathrm{~m} / \mathrm{s}$, determine the final velocity of the body: (i) When the force acts in the direction of motion? (ii) When the force acts in the opposite direction of the motion?

OR
A train of weight 1960 kN starts from rest and attains a speed of $120 \mathrm{~km} / \mathrm{hr}$ in 5 minutes. If the frictional resistance of the track is 10 N per kN of the train's weight, find the average pull required. Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

UNIT - V

A truss of span 5 m is loaded as shown in figure below. Find the reactions and forces in the members of the truss.

11 A truss of 12 m span is loaded as shown in figure below. Determine the forces in the members DG, DF and EF using the method of section.

