B.Tech I Year II Semester (R15) Supplementary Examinations November 2017

ELECTRICAL CIRCUITS - I

(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Define Kirchhoff's law.
(b) What is the significance of coefficient of coupling in a magnetic circuit?
(c) Draw voltage, current and power waveforms for pure capacitive circuit.
(d) Draw phasor diagram for simple RL series circuit.
(e) Define Q factor.
(f) Draw simple Locus diagram for series RC circuit with R (variable parameter).
(g) Define maximum power transfer theorem for sinusoidal excitation.
(h) State Thevenin's theorem.
(i) Define H - parameters.
(j) What is the condition of reciprocity and symmetry in Y - parameters?

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 A bridge network ABCD has $\mathrm{AB}=6 \Omega$, $\mathrm{BC}=12 \Omega$, $\mathrm{CD}=10 \Omega$ and $\mathrm{DA}=3 \Omega$. The galvanometer of resistance 20Ω is connected between B and D and battery of emf 2 V and negligible internal resistance is connected between A and C . Calculate the current in the galvanometer.

OR
3 (a) An iron ring of mean length 40 cm has an air gap of 2 mm and a winding of 300 turns. If the permeability of the iron core is 300 , when a current of 1 A flows through the coil, find the flux density.
(b) Define Faraday's laws of electromagnetic induction.

ONIT - II

(a) In a series circuit, the voltage, current is given by $v(t)=282.8 \sin 314 t, i(t)=14.14 \sin \left(314 t-60^{\circ}\right)$. Calculate value of the circuit elements and calculate active, reactive and apparent power.
(b) Define form factor and crest factor.

OR

5 (a) Show that the power through pure capacitor when excited with $e=E_{m}$ sinwt is zero.
(b) A constant current of 5 A flows for 0.04 seconds and to complete the cycle, a constant current of 2 A flows in the opposite direction for 0.06 seconds. Sketch the waveform of current over one cycle and calculate: (i) Mean value of the current. (ii) The r.m.s value of the current.

UNIT - III
A 10 mH coil is connected in series with a loss free capacitor to a variable frequency source which supplies a constant voltage of 10 V . The circuit current has a maximum value of 0.2 A at frequency of 50 kHz . Calculate: (i) The capacitance of the capacitor. (ii) The Q factor of the coil. (iii) The half-power frequencies.

OR

Draw Locus diagrams for parallel RLC circuit with all parameter variations.

UNIT - IV
Obtain the Thevenin's equivalent circuit at terminals a-b of the network shown in below.

State and prove maximum power transfer theorem for both AC and DC networks.

> UNIT - V

Derive the relationship between hybrid parameters and impedance parameters.
OR
11
Determine the transmission parameters for the given network.
