

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (Mechanical Engg.) (2018 & Onwards) (Sem.-1,2)

ELECTROMAGNETISM Subject Code : BTPH-103-18

M.Code: 75357
Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Write briefly:

- Q1. From the expression of electric field for a continuous volume charge distribution, prove that ∇.E = 1/€₀ ρ, where symbols have their usual meanings.
- Q2. Derive the Laplace and Poisson's equations.
- Q3. What do you understand by Electric displacement?
- Q4. Give the Physical significance of divergence and curl of static magnetic field.
- Q5. Derive the expression $H = \frac{1}{\mu_0} B M$ where symbols have their usual meanings.
- Q6. Mention the importance of Lenz's law in explaining Faraday's law of induction.
- Derive the continuity equation in terms of volume current density.
- Q8. Differentiate between potential and electromotive force.
- Write Maxwell's equations in vacuum in their integral form.
- Q10. Differentiate between linear, circular and elliptical polarization.

1 | M-75357 (S1)-498

www.FirstRanker.com

www.FirstRanker.com

SECTION-B

Q11. a	 Define Uniqueness theorem for Dirichlet and Newmann boundary conditions. 	3
ł	b) Derive the expression for electrostatic energy of a charge distribution in vacuum terms electric field and comment about its (electrostatic energy) characteristics.	in 5
Q12. 1	Derive the expression for potential and electrostatic field due to an electric dipole.	8
Q13. a	a) Explain the concept of magnetic vector potential. Under what conditions it can considered as a scalar?	be 3
ł	 Discuss the process of magnetization and derive the expression for associated bot currents due to magnetization. 	ınd 5
Q14. a	 Make a comparison between the characteristics of diamagnetic, paramagnetic ferromagnetic materials. 	and 4
ŀ	 Derive the expression for magnetic field due to a bar magnet. 	4
SECTION-C		
Q15. a	Derive the expression for energy stored in a magnetic field.	5
ł	b) How the Ampere's circuital law $(\nabla x B = \mu_0 J)$ was modified for time-dependence electric field.	ent 3
Q16. S	State Poynting's theorem of electromagnetism and prove it.	8
Q17. a	a) What do you understand by uniform plane waves, give wave equations in terms of and B and prove the transverse nature of EM waves.	f E 5
ŀ	b) Derive the relation between electric and magnetic fields of an EM wave.	3
-	Derive the expressions for Reflection and transmission of EM waves from non-conducting medium-vacuum interface for normal incidence.	8

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75357 (S1)-498

