Roll No. \square Total No. of Pages : 02
Total No. of Questions: 18

> B.Tech (ME) (2018 Batch) (Sem.-4)
> FLUID MACHINES
> Subject Code : BTME-402-18
> M.Code : 77547

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN Multiple Choice questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :
Q1. What is the meaning of degree of reaction?
Q2. What is draft tube?
Q3. What is need of priming of a pump?
Q4. What is effect of cavitation?
Q5. What is scale effect?
Q6. What is fluid coupling?
Q7. What do you understand by governing of a Pelton turbine?
Q8. Define Negative Slip in reciprocating pump.
Q9. What is hydraulic accumulator?
Q10. What are vane pumps?

SECTION-B

Q11. A turbine is to operate under a head of 25 m at $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The discharge is $9 \mathrm{~m}^{3} / \mathrm{s}$. If the overall efficiency is 90 percent. Determine :
a) Power generated
b) Specific speed of the turbine
c) Type of turbine.

Q12. With the aid of a sketch explain the working of a Hydraulic Accumulator.
Q13. Derive the expression for maximum hydraulic efficiency of a Pelton wheel.
Q14. Explain why the suction lift of a pump cannot exceed certain limit?
Q15. The impeller of a centrifugal pump is 1 m in diameter and rotates at 1500 rpm . The blades are curved backward and make an angle of 30° to the tangent at the periphery. Calculate the power required if the velocity of the flow at outlet is $20 \mathrm{~m} / \mathrm{s}$. Determine the head to which water can be lifted when a diffuser casing reduces the outlet velocity to 60%.

SECTION-C

Q16. Derive expression for the force exerted by the jet of water on a series moving flat plate placed on the periphery of a wheel. Also find the maximum efficiency?

Q17. A Pelton turbine is required to produce 6 MW power when working under a head of 300 m . The turbine r.p.m. is 550 and the overall efficiency is 0.85 . The turbine works with three jets. Determine :
a) The diameter of the runner
b) Discharge per second
c) Diameter of the jet
d) Number of buckets.

Q18. Explain the principle of operation, construction and working of a centrifugal compressor with necessary sketches.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

