Roll No. \square Total No. of Pages: 02
Total No. of Questions: 18
B.Tech. (ME) (2012 Onwards)
(Sem.-5)
MATHEMATICS-III
Subject Code : BTAM-500
M.Code : 70601

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

Write briefly :

1. Expand $f(x)=|\sin x|$ in Fourier series.
2. Find Laplace transform of $\sin h t \cos ^{2} t$.
3. Find Laplace transform of $\frac{e^{-a t}-e^{-b t}}{t}$.
4. Find inverse Laplace transform of $\frac{e^{-7 s^{3}}}{(s-3)^{3}}$
5. Express $x^{4}+2 x^{3}-6 x^{2}+5 x-3$ in terms of Legendre polynomials.
6. For Legendre polynomial $\mathrm{P}_{n}(x)$, show that $P_{n}^{\prime}(1)=\frac{n(n+1)}{2}$
7. Form a partial differential equation by eliminating arbitrary functions from the relation z $=y f(x)+x g(y)$.
8. Solve $x p+y q=3 z$.
9. Show that the function $f(z)=|z|^{4}$ satisfies the Cauchy-Riemann equations only at region.
10. State Cauchy Integral Theorem.

SECTION-B

11. Find the Fourier series expansion of the function $f(x)=x^{2},-\pi<x<\pi$. Deduce that

$$
\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots
$$

12. State and prove Convolution theorem for Laplace transform.
13. For Bessel's function $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$, show that $J_{0}^{2}+2\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}+\ldots ..\right)=1$
14. Solve by Charpit's method $q+x p=p^{2}$.
15. Evaluate $\oint_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}=\frac{\pi}{16}, C:|z-i|=2$

SECTION-C

16. a) Using Laplace transform, solve $y^{\prime}+2 y=1-H(t-1), y(0)=2$, where $H(\mathrm{t})$ is Heaviside's unit step function.
b) Find inverse Laplace transform of $\frac{1}{s^{2}(s+1)}$.
17. a) Using Frobenius method, find two linearly independent solutions of the equation $2 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+1\right) y=0$.
b) A rod of length l with insulated side is initially at a uniform temperature u_{0}. Its ends are suddenly cooled at $0^{\circ} \mathrm{C}$ and kept at that temperature. Find the temperature function $u(x, t)$.
18. a) Find all Taylor and Laurent series expansions of $f(z)=\frac{1}{z(z-1)}$ about the point $z=0$.
b) Compute the residues at all the singular points of $f(z)=\frac{z^{2}}{\left(z^{2}+1\right)^{2}}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

