Roll No. \square Total No. of Pages: 03
Total No. of Questions : 18

B.Tech. (EE) PT (Sem.-6)
 NUMERICAL \& STATISTICAL METHODS
 Subject Code : BTEE-505
 M.Code : 72790

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Define relative error and give bound on the relative error of a floating point number in case of rounding and chopping.
2. Find the polynomial $f(x)$ by using Lagrange's formula for the following data:

\boldsymbol{x}	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	1	3	9	31

3. Define Order of convergence and give order of convergence of Bisection method.

4 Obtain the approximate value of $y(0.1)$ for the initial value problem $y^{\prime}=1+y^{2}, y(0)=1$ with step size $h=0.1$ by using Taylor series second order method.
5. Evaluate the following integral $\int_{0}^{3} \frac{1}{x^{2}+1} d x$ using Simpson's $\frac{3}{8}$ th rule with three sub intervals.
6. A Random variable has the following probability distribution:

\boldsymbol{x}	0	1	2	3	4
$\boldsymbol{p}(\boldsymbol{x})$	0	K	2 K	2 K	7 K

Find K.
7. If X is random variable then prove that $E(a X+b)=a E(X)+b$, where $E(X)$ is mathematical expectation of X .
8. If X is uniformly distributed with mean 1 and variance $\frac{4}{3}$ then find $\mathrm{P}(\mathrm{X}<0)$.
9. Show that mean of Binomial distribution is $n p$, where n is no. of independent trails and p is probability of success of any trail.
10. Give two properties of correlation coefficient.

SECTION-B

11. Use bisection method to find the solution of the equation $3 x-e^{x}=0$ in the interval [1, 2] accurate within 10^{-2}.
12. Perform four iterations of Gauss-Seidel method using 4-digit rounding arithmetic to solve the system of equations

$$
\begin{aligned}
& 4 x_{1}+x_{2}+x_{3}=2 \\
& x_{1}+5 x_{2}+2 x_{3}=6 \\
& x_{1}+2 x_{2}+3 x_{3}=-6
\end{aligned}
$$

by taking initial approximation $x^{(0)}=[0.5,-0.5,-0.5]^{\mathrm{T}}$.
13. Determine the largest eigenvalue and the corresponding eigenvector of the matrix

$$
\left[\begin{array}{ccc}
-15 & 4 & 3 \\
10 & -12 & 6 \\
20 & -4 & 2
\end{array}\right]
$$

correct to three decimal places using the power method.
14. Evaluate the following integral $\int_{0}^{2} \frac{1}{x^{2}+2 x+10} d x$ using Simpson's $\frac{1}{3}$ rd rule with four sub intervals. Compare with the exact solution.
15. A random sample of 10 boys had following I.Q.'s: $70,120,110,101,88,83,95,98,107$, 100. Do these data support the assumption of a population mean I.Q. of 100? Find a reasonable range in which most of the mean I.Q. values of samples of 10 boys lie. (Given $t_{0.05}=2.62$ for 9 degree of freedom).

SECTION-C

16. Use Runge Kutta method of fourth order to approximate $y(0.2)$ taking step size $h=0.1$ for the initial value problem $\frac{d y}{d x}=y+e^{x}, y(0)=0$.
17. A continuous random variable X has the density function $f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2 \\ 0, & \text { elsewhere }\end{cases}$
a) Verify that $f(x)$ is a density function.
b) Find $\mathrm{P}(0<x<1)$.
c) Find the cumulative distribution function $\mathrm{F}(x)$.
18. By using the method of least squares, fit a curve of the form $y=a x^{b}$ to the following data:

\mathbf{x}	2	3	4	5
\mathbf{y}	27.8	62.1	110	161

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

