Roll No.
Total No. of Pages : 02
Total No. of Questions: 18
B.Tech. (CSE / IT) (2012 to 2017)
(Sem.-3)
MATHEMATICS - III
Subject Code : BTAM-302
M.Code: 70808

Time : 3 Hrs.
Max. Marks: 60
INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1. State and prove second shifting theorem for Laplace transforms.
2. Show that $|z|^{2}$ is not analytic at any other point except $z=0$.
3. Discuss modified Euler's method.
4. Find the half-range cosine series for the function $f(x)=(x-1)^{2}$ in the interval $0 \leq x \leq 1$.
5. Solve $p q=p+q$.
6. Evaluate $L\left(e^{a t} \sin b t\right)$.
7. Find the inverse Laplace transform of $(6+s) /\left(s^{2}+6 s+13\right)$.
8. Write Cauchy-Riemann equations in polar form.
9. In a normal distribution, 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.
10. State Cayley-Hamilton theorem.

SECTION-B

11. Find Fourier series expansion of $f(x)=x+x^{2}$ in the interval $-\pi<x<\pi$. Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$.
12. Show that if $L(f(t))=F(s)$ then $L\left(t^{n} f(t)\right)=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$ where $\mathrm{n}=1,2,3, \ldots \ldots$. Hence evaluate $\mathrm{L}\left(\mathrm{t}^{3} \mathrm{e}^{-3 \mathrm{t}}\right)$.
13. If $f(z)$ is an analytic function of z, prove that:
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
14. Solve
$4 x-3 y-9 z+6 w=0$
$2 x+3 y+3 z+6 w=0$
$4 x-21 y-39 z-6 w=-24$
15. The following table shows the distribution of digits in numbers chosen at random from a telephone directory :

Digits	0	1	2	3	4	5	6	7	8	9
Frequency	1026	1107	997	966	1075	933	1107	972	964	853

Test whether the digits may be taken to occurequally frequently in the directory.

SECTION-C

16. Solve $\left(x^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$.
17. Find the eigen values and the corresponding eigen vectors of $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
18. Evaluate $y(0.8)$ using Runge's method of order four, given that $\frac{d y}{d x}=\sqrt{x+y} ; y(0.4)=$ 0.4 (Take $h=0.2$).

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

