Roll No. \square Total No. of Pages : 02
Total No. of Questions: 18
B.Tech. (CE)/(ECE)/(Electrical Engineering \& Industrial Control)/
(Electronics \& Computer Engg)/(Electronics \& Electrical) (2012 to 2017)/
(Electrical \& Electronics) (2011 Onwards)/(EE) (2012 Onwards) (Sem.-3)
ENGINEERING MATHEMATICS - III
Subject Code : BTAM-301
M.Code : 56071

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

Solve the following :

1. Find Laplace transform $t \mathrm{e}^{-4 \mathrm{t}} \sin 3 \mathrm{t}$.
2. Find inverse Laplace transform of $\frac{3 s+2}{(s+3)^{3}}$
3. Find inverse Laplace transform of $\frac{e^{-3 s}}{s+2}$.
4. Using the value of $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, show that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
5. Express $3 x^{2}+5 x-6$ in terms of Legendre polynomials.
6. Derive a PDE by eliminating the arbitrary constants a and b from the equation $x^{2}+y^{2}+(z$ $-b)^{2}=a^{2}$.
7. Solve $\operatorname{PDE}\left(\mathrm{D}^{2}+\mathrm{DD}^{\prime}-2 \mathrm{D}^{\prime 2}\right) z=0$.
8. Show that the function $f(z)=\bar{z}$ does not have derivative at any point.
9. If $f(z)$ is an analytic function with constant modulus then $f(z)$ is constant.
10. State Cauchy's Integral Formula.

SECTION-B

11. Find the Fourier series expansion of the function $f(x)=x+\pi,-\pi<x<\pi$. Hence show that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots$
12. Find the solution of the initial value problem using the Laplace transform
$y^{\prime \prime}+6 y^{\prime}+13 y=e^{-t}, y(0)=0, y^{\prime}(0)=4$.
13. Find two linearly independent solutions of the differential equation
$2 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+1\right) y=0$, using Frobenius method.
14. Find the general solution of the partial differential equation $(y+z) p+(x+z) q=x+y$.
15. Evaluate $\oint_{C} \frac{(z+1)}{z(z-2)(z-4)^{3}} d z, \mathrm{C}:|z-3|=2$.

SECTION-C

16. a) Write the Fourier cosine series of $f(x)=\left\{\begin{array}{rr}-1, & 0 \leq x \leq 1 \\ 1, & 1<x \leq 2\end{array}\right.$.
b) Let $f(t)$ be a piecewise continuous function on $[0, \infty]$, be of exponential order and periodic with period T . Then $L[f(t)]=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$.
17. a) State and Prove Rodrigue's Formula.
b) Using the method of separation of variables, solve

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, u(x, 0)=6 e^{-3 x}
$$

18. Find all Taylor and Laurent series expansions of $f(z)=\frac{1}{(z+1)(z+2)^{2}}$ about the point $z=1$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

