Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech. (ECE)/(Electronics Engg)/
(Electronics \& Computer Engg) (2012 to 2017) (Sem.-3)
DIGITAL CIRCUITS AND LOGIC DESIGN
Subject Code : BTEC-302
M.Code : 57584

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
a) Perform the subtraction $10111_{2}-11111_{2}$ using 1's complement method of subtraction.
b) Convert the decimal number 359_{10} to BCD .
c) Give the difference between SOP and POS forms.
d) Draw symbol and construct the truth table for three input Ex-OR gate.
e) Why totem pole outputs cannot be connected together.
f) How multiplexer differs from decoder?
g) What is the basic difference between buffered and un buffered CMOS devices?
h) What is totem-pole output stage? What are its advantages?
i) Which is the fastest ADC and why?
j) How many address bits are required for a 512×4 memory?

SECTION-B

2. Using the Boolean algebra, simplify the expression :

$$
\bar{A} \bar{B} C+(\overline{A+B+\bar{C}})+\bar{A} \bar{B} \bar{C} D
$$

3. What is meant by Decoder? Explain 3-to-8 line decoder with diagram and truth table.
4. Design a counter with the following binary sequence: $0,4,2,1,6$ and repeat. Use JK flipflops.
5. Explain the working of a basic totem-pole TTL 2 input NAND gate.
6. Realize $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,4,6,7,8,9,10,11,15)$ using 8 to 1 Mux

SECTION-C

7. Find a minimal SOP representation for $f(A, B, C, D, E)=\sum m(1,4,6,10,20,22,24,26)$ $+d(0,11,16,27)$ using K-map method. Draw the circuit of the minimal expression using only NAND gates.
8. a) Implement the following function using PLA $\mathrm{F} 1=\Sigma(0,1,2,4)$ and $\mathrm{F} 2=\Sigma(0,5,6,7)$.
b) Describe with the help of a schematic diagram the principle of operation of a successive type A/D converter.
9. Write short notes on any two :
a) Weighted register D / A converter
b) Edge triggered JK flip-flop
c) CMOS logic family

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any
page of Answer Sheet will lead to UMC against the Student.

