

Roll No. Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (Automation & Robotics) (2012 & Onward) (Sem.-3) MATHEMATICS-III

Subject Code: BTAR-301 M.Code: 63001

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. If Laplace transform of f(t) is F(s) then find Laplace Transform $L\left(\int_0^t f(t)dt\right)$, if it exists.
- 2. Find Inverse Laplace Transform of $\frac{2s+6}{s^2+4}$.
- 3. Write down the Bessel's differential equation of order 'n'.
- 4. Define error function.
- 5. Express the following in terms of Lagendre polynomials $1 x + x^2$
- 6. Show that cosz is an analytic function.
- 7. Define a conformal mapping.
- 8. Evaluate $\int_{C} \frac{1+z^2}{z-2} dz$,, C: |z| = 3
- 9. Evaluate the integral $\int_0^{3+i} z^2 dz$ along the line y = x/3
- 10. Expand $\log(1+z)$ about z=0.

1 M- 63001

SECTION-B

Solve the differential equation using Method of Laplace transform

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = \sin 2t, \text{ given that } y(0) = 2, y'(0) = -4$$

- 12. Prove that $(2n + 1) xP_n(x) = (n + 1) P_{n+1}(x) + nP_{n-1}(x)$
- Show that the function defined by $f(z) = \begin{cases} \frac{x^2 y^3 (x + iy)}{x^6 + y^{10}} & z = 0 \\ 0, & z \neq 0 \end{cases}$, is analytic at origin, even though f'(0) does not exist.
- If the potential function is $\log (x^2 + y^2)$, find the flux function and complex potential function.
- Show that the transformation $w = \frac{z-i}{z+i}$ maps the real axis in the z-plane onto the circle |w| = 1.

SECTION-C

- 16. (a) Define unit step function and find its Laplace transform.
- (b) Prove that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$ 17. Solve by applying Frobenius method : $9x(1-x)\frac{d^2y}{dx^2} 12\frac{dy}{dx} + 4y = 0$
- Using Contour integration, evaluate the integral $\int_{0}^{\infty} \frac{dx}{x^4 + 1}$

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

2 | M-63001 308