Roll No. \square Total No. of Pages : 02
Total No. of Questions: 18
B.Tech (Automation \& Robotics) (2011 \& Onwards) (Sem.-5)

NUMERICAL METHODS IN ENGINEERING

Subject Code: ME-309
 M.Code : 70482

Time : 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

Answer the following :

1. Define a cubic spline interpolant with natural boundary.
2. What do we mean by unconditionally stable method?
3. Find the condition number of the function $f(x)=\cos x$.
4. Determine the Lagrange interpolating polynomial passing through the points $(2,4)$ and $(5,3)$.
5. Out of chopping of numbers and rounding off of numbers, which one introduce less error? Explain suitably.
6. Find the 1_{2} norm of the vector $(1, \sqrt{6}, 3)^{t}$.
7. What is the order of convergence when Newton Raphson's method is applied to the equation $x^{2}-6 x+9=0$ to find its multiple root.
8. Use the forward-difference formula to approximate the derivative of $f(x)=\ln x$ at $x_{0}=1.8$ using $\mathrm{h}=0.01$.
9. Compute $\int_{0}^{\pi} x \sin x d x$ using Simpson's rule.
10. Explain Lagrange's interpolation.
www.FirstRanker.com

SECTION-B

11. Use Euler's method to approximate the solution of the following initial value problem $y^{\prime}=y / t-(y / t)^{2}, \quad 1 \leq \mathrm{t} \leq 2, y(\mathrm{l})=1, h=0.1$.
12. Construct a clamped spline $S(x)$ which passes through the points $(1,2),(2,3)$ and $(3,5)$ that has $S^{\prime}(1)=2$ and $S^{\prime}(3)=1$.
13. The following data is given :

1.0	1.3	1.6	1.9	2.2
0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Use Lagrange's formula to approximate $f(1.5)$.
14. Let $f(x)=(\mathrm{x} \cos x-\sin) /(x-\sin x)$. Use four digit rounding arithmetic to evaluate $f(0.1)$. The actual value is $f(0.1)=-1.99899998$, using this value find the relative error.
15. Use backward-difference method with steps sizes $\mathrm{h}=0.1$ and $\mathrm{k}=0.01$ to approximate the solution to the heat equation

$$
\frac{\partial u}{\partial i}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad 0<x<1, t \geq 0,
$$

with boundary conditions

$$
\begin{aligned}
& u(0, t)=c(1, t)=0, t>0, \\
& u(x, 0)=\sin (\pi x), 0 \leq x \leq 1 .
\end{aligned}
$$

SECTION-C

16. Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_{0}^{\pi} \sin x d x$ and employing.
a) Composite trapezoidal rule.
b) Composite Simpson's rule.
17. Draw the graph of $4 x=\tan x$. Use Newton's method to find the first two positive roots of $4 x=\tan x$ (Note: You can use the graph drawn for selecting your initial guesses.).
18. Use Gauss elimination method with scaled partial pivoting to solve the following linear system of equations

$$
\begin{aligned}
& 2.11 x_{1}-4.21 x_{2}+0.921 x_{3}=2.01 \\
& 4.01 x_{1}+10.2 x_{3}-1.12 x_{3}=-3.09 \\
& 1.09 x_{1}+0.987 x_{2}+0.832 x_{3}=4.21
\end{aligned}
$$

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

