Roll No. \square Total No. of Pages : 02
Total No. of Questions: 18
B.Tech. (Automation \& Robotics) (2018 Batch)
(Sem.-3)
MATHEMATICS-III
Subject Code : BTAR-303-18
M.Code : 76502

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. Find the Fourier series of the function $f(x)=|x|$ over the interval $[-2,2]$.
2. Find Laplace transform of $e^{-t} \sin ^{2} t$.
3. State and prove Second Shifting Property for Laplace transform.
4. Find inverse Laplace transform of $\frac{2 s-3}{s^{2}+4 s+13}$.
5. Express sum of Legendre polynomials $8 \mathrm{P}_{4}(\mathrm{x})+2 \mathrm{P}_{3}(\mathrm{x})+\mathrm{P}_{0}(\mathrm{x})$ in terms of powers of x.
6. For Legendre polynomial $P_{n}(x)$, show that $P_{n}(-x)=(-1)^{n} P_{n}(x)$
7. Form a partial differential equation by eliminating arbitrary function f from the relation

$$
z=y^{2}=2 f\left(\frac{1}{x}+\log y\right) .
$$

8. Solve $z(x p-y q)=y^{2}-x^{2}$.
9. Show that the function $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic.
10. State Cauchy Integral Theorem.

SECTION-B

11. Find the Fourier series expansion of the function
$f(x)=\left\{\begin{array}{lc}0, & \text { for }-\pi \leq x<0 \\ 1, & \text { for } 0 \leq x \leq \pi\end{array}\right.$. Deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots .$.
12. State and prove Convolution Theorem for Laplace transform.
13. For Legendre polynomial $P_{n}(x)$, show that:

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1}, \text { for } m=n .
$$

14. Solve by Charpit's method $z=p^{2} x+q^{2} y$.
15. Evaluate $\oint_{C} \frac{3 z+5}{z^{2}+2 z} d z, \mathrm{C}:|z|=1$.

SECTION-C

16. a) Using Laplace transform, solve $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 t} t^{2}, y(0)=2, y^{\prime}(0)=6$.
b) Find inverse Laplace transform of $\frac{2 s+1}{(s+2)^{2}(s-1)^{2}}$.
17. a) Solve Legendre differential equation($\left.1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$.
b) Using the method of separation of variables, solve

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} u(x, 0)=x^{2}, u(0, t)=u(2 \pi, t)=0 .
$$

18. a) Find all Taylor and Laurent series expansions of $f(z)=\frac{1}{z^{2}+1}$ about the point $z=i$.
b) Compute the residues at the singular points $z=1,-2$ of

$$
f(z)=\frac{1+z+z^{2}}{(z-1)^{2}(z+2)}
$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

