FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

B 11 NI	1						
Roll No	1						
ROIINO.							

Total No. of Questions: 18

Total No. of Pages : 03

B.Tech. (BT) (2018 Batch) (Sem.-3) TRANSPORT PHENOMENON Subject Code : BTBT-305-18 M.Code : 76949

Time: 3 Hrs.

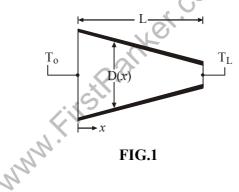
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
- 4. Use of steam table is allowed.

SECTION-A

Write briefly :


- 1. Define Newton's law of viscosity.
- 2. Define average velocity. And how do you calculate average velocity?
- 3. What is power law model?
- 4. Define Reynold's number and Prandtl number.
- 5. What is Chilton Colburn analogy
- 6. Define Navier Stokes equation.
- 7. What is Biot number for mass transfer? What do we conclude from Biot number is very small (<<1)?
- 8. Relation between maximum velocity and local velocity, when a fluid flows under laminar, steady state, incompressible Newtonian fluid, in a tube?
- 9. What are Bingham plastic fluids and pseudo plastic fluids? Explain with example.
- 10. What is Hagen Poiseullie's equation?

www.FirstRanker.com

SECTION-B

- 11. An exothermic chemical reaction takes place in a 20 cm thick slab and the energy generation rate per unit volume is 1×10^6 W/m³ The steady-state heat transfer rate into the slab at the left-hand side, i.e., at x = 0, is 280 W. Calculate the heat transfer rate to the surroundings from the right-hand side of the slab, i.e., at x = L. The surface area of each face is 40cm². Also calculate the heat flux at x = 0 and x = L.
- 12. Water at 20 °C is flowing past a flat plate at 0.914 m s. The plate is 0.305 m wide.
 - a) Calculate the Reynolds number 0.305 m from the leading edge to determine if the flow is laminar.
 - b) Calculate the boundary layer thickness at x = 0.152 and x = 0.305 m from the leading edge.
- 13. Heat is generated in a rectangular heating element of dimensions $1m \times 0.5m \times 0.1m$ of thermal conductivity 60 W/m K at rate of 15×10^3 W/m³. Calculate maximum temperature in the wall if the surface temperatures are 100°C. Also calculate the heat flux at the surface.
- 14. The potential function for a two dimensional, irrotational. incompressible flow field is given as $\Phi = x^2 2y y^2$. Find the stream function ψ and velocity components v_x and v_y .
- 15. Consider a solid cone of circular cross-section whose lateral surface is well insulated as shown in Figure 1. The diameters at x = 0 and x = L are 25cm and 5cm. respectively If the heat flux at x = 0 is 45W/m2 under steady conditions, determine the heat transfer rate and the value of the heat flux at x = L.

SECTION-C

- 16. A 10 cm long copper fin of diameter 6mm is attached to a vertical wall at 500 K and is projected in a room where air is at 300 K. The heat transfer coefficient at the fin surface is 300 W/m² K and conductivity of fin material is 390 W/m K. Calculate :
 - a) Heat loss from fin.
 - b) Fin efficiency
 - c) Fin effectiveness.

2 M-76949

(S2)-1085

17. Heat is flowing through an annular wall of inside radius r_0 and outside radius r_1 . The thermal conductivity varies linearly with temperature from k_0 at T_0 to k_1 at T_1 . Develop an expression for the heat flow through the wall.

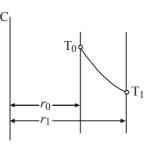
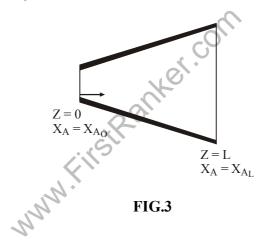



FIG.2

18. Consider the transfer of species *A* by diffusion through a slightly tapered slab as shown in Figure. Mass transport can be considered one-dimensional in the *z*-direction.

Determine the rate of molar transfer for the :

- a) Constant diffusivity
- b) Constant diffusivity and constant area

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76949

(S2)-1085