FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Max. Marks: 60

Total No. of Questions : 18

B.Tech (Civil Engg.) (2018 & Onwards) (Sem.-2) MATHEMATICS-II Subject Code : BTAM-201-18

M.Code: 76254

Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Answer briefly :

1) Is this differential equation
$$\frac{d^2y}{dx^2} + a^2x = 0$$
 linear?

2) Is this differential equation $x^2 y dx - (x^3 + y^3) dy = 0$ exact?

- 3) Write the solution of the Clairaut's equation $y = px + \sin^{-1} p$.
- 4) Find the wronskian from $\frac{d^2y}{dx^2} + 4y = \tan 2x$.

5) Find complementary function of
$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sin x.$$

6) Find particular integral of
$$\frac{\partial^2 z}{\partial t^2} - a^2 \frac{\partial^2 z}{\partial x^2} = E \sin pt$$
.

- 7) Write one dimensional wave equation.
- 8) Classify the equation $(x + 1) u_{xx} 2(x + 2)u_{xy} + (x + 3) y_{yy} = 0.$
- 9) What is a boundary value problem?
- 10) Write Laplace equation in cylindrical coordinates.

1 | M-76254

(S1)-672

www.FirstRanker.com

SECTION-B

11) Solve a)
$$[1+\log(xy)]dx + \left[1+\frac{x}{y}\right]dy = 0.$$

- b) $x\left(\frac{dx}{dy}+y\right)=1-y.$
- 12) a) Solve $(D^2 6D + 9) y = 6e^{3x} + 7e^{-2x} \log 2$.

b) Find the power series solution of the differential equation $(4x D^2 + 2D + 1) y = 0$.

- 13) Solve a) $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$.
 - b) $x^2p + y^2q = z (x + y)$.
- 14) a) Solve the PDE $(D^2 2DD' + D'^2) z = e^{x+y}$.
 - b) Solve the PDE $(D + D') (D 2D' + 2) z = \sin (2x + y)$.

SECTION-C

- 15) Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ by method of separation of variables. Given that $u = 3e^{-y} e^{-5y}$ when x = 0.
- 16) Solve the BVP $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ using D' Alembert's technique subject to the conditions $u = P_0 \cos pt$ when x = l and u = 0 when x = 0.
- 17) Solve the BVP $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ using separation of variables method subject to the conditions u(0, t) = u(l, t) = 0, u(x, 0) = x where l > 0.
- 18) The diameter of a semi-circular plate of radius a is kept at 0°C and the temperature at the semicircular boundary is T°C. Estimate the steady state temperature in the plate using the

Laplace equation
$$r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0.$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76254

(S1)-672