Roll No.
Total No. of Pages : 02
Total No. of Questions: 18
B.Tech. (CE) (2018 Batch) (Sem.-3)

MATHEMATICS-III (TRANSFORM \& DISCRETE MATHEMATICS) Subject Code : BTAM-301-18
 M.Code : 76373

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. Prove that $\int \vec{r} . d r=0$, where r has its usual meaning,
2. If $\vec{A}=2 z \hat{i}+y \hat{j}-x^{2} \hat{k}, \vec{B}=x^{2} y z \hat{i}-2 x z^{3} \hat{j}-x z^{2} \hat{k}$ then find $\frac{\partial^{2}}{\partial x \partial y}(\vec{A} \times \vec{B})$ at $(1,1,1)$.
3. Show that curl curl $\vec{v}=\operatorname{grad} \operatorname{div} \vec{v}-\nabla^{2} \vec{v}$ where \vec{v} is any vector.
4. If \vec{f} is solenoid vector then show that curl curl curl curl $\vec{f}=\nabla^{4} f$.
5. Define Gradiant and state its physical significance.
6. State and prove Second shifting property of Laplace transform.
7. Evaluate $\mathrm{L}\left(\cos ^{2} \alpha t \sin \beta t\right)$.
8. Find finite Fourier sine transform of $f(t)=1$.
9. Define Euler formulae.
10. State and prove change of scale property of laplace transform.

SECTION-B

11. Find directional derivative of $\varnothing=3 y^{2}+y z^{3}$ at a point $(2,-1,1)$ in the direction normal to the surface $x \log z-y^{2}+4=0$ at a point $(-1,2,1)$.
12. $\vec{f}=\left(2 x^{2}+y^{2}\right) \hat{i}+(3 y-4 x) \hat{j}$, evaluate $\int_{C} \vec{f} d \vec{r}$ around the triangle ABC whose vertices are $\mathrm{A}(0,0), \mathrm{B}(2,0)$ and $\mathrm{C}(2,1)$.
13. Using Laplace evaluate $\int_{0}^{\infty} t^{3} e^{-t} \sin t d t$.
14. Find inverse laplace of $\frac{s^{2}}{\left(s^{2}+\alpha^{2}\right)^{2}}$.
15. Use convolution theorem to find $F^{-1}\left(\frac{1}{12-s^{2}+7 i s}\right)$.

SECTION-C

16. Verify Green's theorem in the XY-plane for $\oint_{C}\left(x y^{2}-2 x y\right) d x=\left(x^{2} y+3\right) d y$ around boundary C of the region enclosed $y^{2}=8 x$ and $x=2$.
17. The string is stretched between the points $(0,0)$ and $(l, 0)$. If it is displaced along the curve $y=K \sin \left(\frac{\pi x}{l}\right)$ and released from rest in that position at time $t=0$. Find the displacement $y(x, t)$ at any time $t>0$ and at any point, $x, 0<x<l$.
18. If $f(x)=\left\{\begin{array}{c}x, \text { when } 0<x<\frac{\pi}{2} \\ \pi-2 \text {, when } \frac{\pi}{2}<x<\pi\end{array}\right.$ show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}+\ldots .\right.$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

