FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages : 02
Total No. of Questions : 18	
B.Tech. (CE) (2018 Batch) MATHEMATICS-III (TRANSFORM & DISC Subject Code : BTAM-30 M.Code : 76373	(Sem.–3) RETE MATHEMATICS) 1-18
Time : 3 Hrs.	Max. Marks:60
 INSTRUCTIONS TO CANDIDATES : SECTION-A is COMPULSORY consisting of TEN of each. SECTION-B contains FIVE questions carrying F have to attempt any FOUR questions. SECTION-C contains THREE questions carrying have to attempt any TWO questions. 	questions carrying TWO marks IVE marks each and students TEN marks each and students
SECTION-A	
Write briefly :	

- 1. Prove that $\int \vec{r} dr = 0$, where *r* has its usual meaning.
- 2. If $\vec{A} = 2z\hat{i} + y\hat{j} x^2\hat{k}$, $\vec{B} = x^2yz\hat{i} 2xz^3\hat{j} xz^2\hat{k}$ then find $\frac{\partial^2}{\partial x \partial y}(\vec{A} \times \vec{B})$ at (1, 1, 1).
- 3. Show that *curl curl* $\vec{v} = grad div \vec{v} \nabla^2 \vec{v}$ where \vec{v} is any vector.
- 4. If \overrightarrow{f} is solenoid vector then show that *curl curl curl curl curl* $\overrightarrow{f} = \nabla^4 f$.
- 5. Define Gradiant and state its physical significance.
- 6. State and prove Second shifting property of Laplace transform.
- 7. Evaluate L ($\cos^2 \alpha t \sin \beta t$).
- 8. Find finite Fourier sine transform of f(t) = 1.
- 9. Define Euler formulae.
- 10. State and prove change of scale property of laplace transform.

FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

SECTION-B

- 11. Find directional derivative of $\emptyset = 3y^2 + yz^3$ at a point (2, -1, 1) in the direction normal to the surface $x \log z y^2 + 4 = 0$ at a point (-1, 2, 1).
- 12. $\vec{f} = (2x^2 + y^2)\hat{i} + (3y 4x)\hat{j}$, evaluate $\int_C \vec{f} d\vec{r}$ around the triangle ABC whose vertices are A (0, 0), B (2, 0) and C (2, 1).
- 13. Using Laplace evaluate $\int_0^\infty t^3 e^{-t} \sin t \, dt$.
- 14. Find inverse laplace of $\frac{s^2}{(s^2 + \alpha^2)^2}$.
- 15. Use convolution theorem to find $F^{-1}\left(\frac{1}{12-s^2+7is}\right)$.

SECTION-C

- 16. Verify Green's theorem in the XY-plane for $\oint_C (xy^2 2xy) dx = (x^2y + 3) dy$ around boundary C of the region enclosed $y^2 = 8x$ and x = 2.
- 17. The string is stretched between the points (0, 0) and (l, 0). If it is displaced along the curve $y = K \sin\left(\frac{\pi x}{l}\right)$ and released from rest in that position at time t = 0. Find the displacement y(x, t) at any time t > 0 and at any point, x, 0 < x < l.

18. If
$$f(x) = \begin{cases} x, when \ 0 < x < \frac{\pi}{2} \\ \pi - 2, when \ \frac{\pi}{2} < x < \pi \end{cases}$$
 show that $f(x) = \frac{4}{\pi} \left[\sin x - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} + \dots \right]$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76373

(S2)-1027

www.FirstRanker.com