

www.FirstRanker.com

www.FirstRanker.com

458

Roll No.										Total No. of Pages :	02
Total No.	٠f ۱	Ô٠	100	e ti	۸n	•	٠ ،	a			

Total No. of Questions: 09

B.Arch. (2012 & Onwards) (Sem.-2) THEORY OF STRUCTURES-I Subject Code: BACH-207

M.Code: 45095

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1) Attempt total FIVE questions. Question no. 1 is compulsory.
- 2) Missing data, if any may be assumed suitably.
- 3) Draw neat sketches wherever necessary.

1.	a)	What do you understand by Young's Modulus of Elasticity?	2
	b)	What is a Perfect Frame?	2
	c)	Define the term 'Section Modulus'.	2
	d)	State Triangle law of forces.	2
	e)	Name various Gravitational loads?	2
	f)	Differentiate between a Cantilever and Simply Supported beam.	2
2.	Ex	eplain various loads (as per IS 875) acting on the structures.	12
3.	Ex	plain various Force systems acting on a body in brief with the help of sketches.	12
4.	a)	State and prove 'Theorem of Parallel Axis'.	4
	b)	Find Moment of Inertia (Ixx and Iyy) of an unequal angle section 150mm × 10 10mm with longer leg vertical.	00mm ×
5.	a)	Define centroid and centre of gravity.	4
	b)	Find Moment of Inertia (Ixx and Iyy) of an inverted T-section 150mm \times 15 10mm.	60mm × 8

1 | M-45095

www.FirstRanker.com

www.FirstRanker.com

6.	 a) Derive the 'Basic Equation of Bending'. 	6
	b) A simply supported rectangular beam 75 × 100mm of 5m span placed with longer vertical, carries a u.d.l. of 5kN/m over the whole span. Calculate the maximum bend stress developed in the section.	-
7.	A simply supported beam of span of 12m span carries a concentrated load of 4 kN, 5 and 3 kN at distance of 3m, 6m and 9m respectively from left hand support. Calcul maximum shear force and bending moment. Also draw SFD and BMD.	
8.	Write short notes on :	
	a) Neural Axis	3
	b) Moment of Resistance	3
	c) Young's Modulus of Elasticity	3
	d) Shear Modulus	3
9.	Explain classification of frames in brief. What are the assumptions made for the analysis frames?	s of 12

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

2 | M- 45095 458