
www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 1 of 42

 –

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

I SEMESTER - R 2017

GE8161– PROBLEM SOLVING AND PYTHON PROGRAMMING
LABORATORY

Name : _______________________________________

Register No : _______________________________________

Section : _______________________________________

LABORATORY MANUAL

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 2 of 42

DHANALAKSHMI COLLEGE OF ENGINEERING

 is committed to provide highly disciplined, c onscientious and

enterprising professionals conforming to global standards through value based quality education

and training.

 To provide competent technical manpower capable of meeting requirements of the industry

 To contribute to the promotion of Academic excellence in pursuit of Technical Education at

different levels

 To train the students to sell his brawn and brain to the highest bidder but to never put a price

tag on heart and soul

VISION

MISSION

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 3 of 42

PROGRAM EDUCATIONAL OBJECTIVES

1. FUNDAMENTALS

To impart students with fundamental knowledge in Mathematics, Science and

fundamentals of engineering that will mould them to be successful professionals

2. CORE COMPETENCE

To provide students with sound knowledge in engineering and experimental skills to

identify complex software problems in industry and to develop practical solutions for them

3. BREADTH

To provide relevant training and experience to bridge the gap between theory and practice

this enables them to find solutions for real time problems in industry and organization, and to

design products requiring interdisciplinary skills

4. PROFESSIONALISM SKILLS

To bestow students with adequate training and provide opportunities to work as team that

will build up their communication skills, individual leadership and supportive qualities, and to enable

them to adapt and work in ever changing technologies

5. LIFELONG LEARNING

To develop the ability of students to establish themselves as professionals in Computer

Science and Engineering and to create awareness about the need for lifelong learning and

pursuing advanced degrees

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 4 of 42

PROGRAM OUTCOMES

a) To apply the basic knowledge of Mathematics, Science and engineering fundamentals in

Computer Science and Engineering field

b) To design and conduct experiments as well as to analyze and interpret data and apply the

same in the career

c) To design and develop innovative and creative software applications

d) To understand a complex real world problem and develop an efficient practical solution

e) To create, select and apply appropriate techniques, resources, modern engineering and IT

tools

 f) To understand their roles as a professionals and give the best to the society

g) To develop a system that will meet expected needs within realistic constraints such as

economical, environmental, social, political, ethical, safe and sustainable

h) To communicate effectively and make others understand exactly what they are trying to

convey in both verbal and written forms

i) To work in a team as team member or a leader and make unique contributions and work with

coordination

j) To exhibit confidence in self-education and ability for lifelong learning

 k) To develop and manage projects in multidisciplinary environments

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 5 of 42

GE 8161 – PROBLEM SOLVING AND PYTHON PROGRAMMING
LABORATORY

(Common to all branches of B.E. / B.Tech Programmes)

SYLLABUS

To write, test, and debug simple Python programs.

To implement Python programs with conditionals and loops.

Use functions for structuring Python programs.

Represent compound data using Python lists, tuples, dictionaries.

Read and write data from/to files in Python.

LIST OF EXPERIMENTS:
1.Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13.Simulate bouncing ball in Pygame

Upon completion of the course, students will be able to:
Write, test, and debug simple Python programs.

Implement Python programs with conditionals and loops.

Develop Python programs step-wise by defining functions and calling them.

Use Python lists, tuples, dictionaries for representing compound data.

Read and write data from/to files in Python.

COURSE OUTCOMES

COURSE OBJECTIVES

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 6 of 42

GE 8161 – PROBLEM SOLVING AND PYTHON PROGRAMMING
LABORATORY

CONTENTS

Sl.No. Name of the Experiment
Page
No.

1 Compute the GCD of two numbers. 07

2 Find the square root of a number (Newton’s method) 09

3 Exponentiation (power of a number) 11

4 Find the maximum of a list of numbers 13

5(a) Linear search 15

5(b) Binary search 17

6(a) Selection sort 19

6(b) Insertion sort 21

7 Merge sort 23

8 First n prime numbers 26

9 Multiply matrices 28

10 Programs that take command line arguments (word count) 30

11 Find the most frequent words in a text read from a file 32

12 Simulate elliptical orbits in Pygame 34

13 Simulate bouncing ball in Pygame 37

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 7 of 42

Aim:
 To write a Python program to find GCD of two numbers.

Algorithm:

1. Define a function named computeGCD()

2. Find the smallest among the two inputs x and y

3. Perform the following step till smaller+1

Check if ((x % i == 0) and (y % i == 0)), then assign GCD=i

4. Print the value of gcd

Program:

def computeGCD(x, y):
 if x > y:
 smaller = y
 else:
 smaller = x
 for i in range(1, smaller+1):
 if((x % i == 0) and (y % i == 0)):
 gcd = i

 return gcd

num1 = 54
num2 = 24

take input from the user
num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))

print("The GCD. of", num1,"and", num2,"is", computeGCD(num1, num2))

Ex. No. :01

Date:

GCD OF TWO NUMBERS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 8 of 42

Sample output :

The GCD of 54 and 24 is 6

Result:

Thus the Python program to compute GCD of two numbers is executed successfully and

the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 9 of 42

Aim:

 To write a Python Program to find the square root of a number by Newton’s Method.

Algorithm:

1. Define a function named newtonSqrt().

2. Initialize approx as 0.5*n and better as 0.5*(approx.+n/approx.)

3. Use a while loop with a condition better!=approx to perform the following,

i. Set approx.=better

ii. Better=0.5*(approx.+n/approx.)

4. Print the value of approx

Program:

def newtonSqrt(n):

 approx = 0.5 * n

 better = 0.5 * (approx + n/approx)

 while better != approx:

 approx = better

 better = 0.5 * (approx + n/approx)

 return approx

print('The square root is' ,newtonSqrt(81))

Ex. No. :02

Date:

SQUARE ROOT OF A NUMBER

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 10 of 42

Output:

The square root is 9

Result:

Thus the Python program for finding the square root of a given number by Newton’s

Method is executed successfully and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 11 of 42

Aim:

 To write a Python program to find the exponentiation of a number.

Algorithm:

1. Define a function named power()

2. Read the values of base and exp

3. Use ‘if’ to check if exp is equal to 1 or not

i. if exp is equal to 1, then return base

ii.if exp is not equal to 1, then return (base*power(base,exp-1))

4. Print the result

Program:

def power(base,exp):

 if(exp==1):

 return(base)

 if(exp!=1):

 return(base*power(base,exp-1))

base=int(input("Enter base: "))

exp=int(input("Enter exponential value: "))

print("Result:",power(base,exp))

Ex. No. : 03

Date:

EXPONENTIATION OF A NUMBER

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 12 of 42

Output:

Enter base: 7

Enter exponential value: 2

Result:49

Result:

 Thus the Python program to find the exponentiation of a number is executed successfully

and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 13 of 42

Aim:

 To write a Python Program to find the maximum from a list of numbers.

Algorithm:

1. Create an empty list named l

2. Read the value of n

3. Read the elements of the list until n

4. Assign l[0] as maxno

5. If l[i]>maxno then set maxno=l[i]

6. Increment i by 1

7. Repeat steps 5-6 until i<n

8. Print the value of maximum number

Program:

l=[]

n=int(input("enter the upper limit"))

for i in range(0,n):

 a=int(input("enter the numbers"))

 l.append(a)

maxno=l[0]

for i in range(0,len(l)):

 if l[i]>maxno:

 maxno=l[i]

print("The maximum number is %d"%maxno)

Ex. No. :
04

Date:

FINDING MAXIMUM FROM A LIST OF NUMBERS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 14 of 42

 Output:

Enter the upper limt 3
Enter the numbers 6
Enter the numbers 9
Enter the numbers 90
The maximum number is 90

Result:

 Thus a Python Program to find the maximum from the given list of numbers is successfully

executed and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 15 of 42

Aim:

To write a Python Program to perform Linear Search

Algorithm:

1. Read n elements into the list

2. Read the element to be searched

3. If alist[pos]==item, then print the position of the item

4. Else increment the position and repeat step 3 until pos reaches the length of the list

Program:

def search(alist,item):

 pos=0

 found=False

 stop=False

 while pos<len(alist) and not found and not stop:

 if alist[pos]==item:

 found=True

 print("element found in position",pos)

 else:

 if alist[pos]>item:

 stop=True

 else:

 pos=pos+1

 return found

a=[]

n=int(input("enter upper limit"))

for i in range(0,n):

 e=int(input("enter the elements"))

 a.append(e)

x=int(input("enter element to search"))

search(a,x)

Ex. No. : 5(a)

Date:

LINEAR SEARCH

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 16 of 42

Output:

Enter upper limit 5

Enter the elements 6

Enter the elements 45

Enter the elements 2

Enter the elements 61

Enter the elements 26

Enter element to search 6

Element found in position 1

Result:

 Thus the Python Program to perform linear search is executed successfully and the output

is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 17 of 42

Aim:

 To write a Python Program to perform binary search.

Algorithm:

1. Read the search element

2. Find the middle element in the sorted list

3. Compare the search element with the middle element

i. if both are matching, print element found

ii. else then check if the search element is smaller or larger than the middle element

4. If the search element is smaller than the middle element, then repeat steps 2 and 3 for the

left sublist of the middle element

5. If the search element is larger than the middle element, then repeat steps 2 and 3 for the

right sublist of the middle element

6. Repeat the process until the search element if found in the list

7. If element is not found, loop terminates

Program:

def bsearch(alist,item):

 first=0

 last=len(alist)-1

 found=False

 while first<=last and not found:

 mid=(first+last)//2

 if alist[mid]==item:

 found=True

 print("element found in position",mid)

 else:

 if item<alist[mid]:

 last=mid-1

EX. No. : 5(b)

Date:

BINARY SEARCH

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 18 of 42

 else:

 first=mid+mid-1

 return found

a=[]

n=int(input("enter upper limit"))

for i in range(0,n):

 e=int(input("enter the elements"))

 a.append(e)

x=int(input("enter element to search"))

bsearch(a,x)

Output:

enter upper limit 6

enter the elements 2

enter the elements 3

enter the elements 5

enter the elements 7

enter the elements 14

enter the elements 25

enter element to search 5

element found in position 2

Result:

 Thus the Python Program to perform binary search is executed successfully and the output

is verified

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 19 of 42

Aim:

 To write a Python Program to perform selection sort.

Algorithm:

1. Create a function named selectionsort

2. Initialise pos=0

3. If alist[location]>alist[pos] then perform the following till i+1,

4. Set pos=location

5. Swap alist[i] and alist[pos]

6. Print the sorted list

Program:

def selectionSort(alist):

 for i in range(len(alist)-1,0,-1):

 pos=0

 for location in range(1,i+1):

 if alist[location]>alist[pos]:

 pos= location

 temp = alist[i]

 alist[i] = alist[pos]

 alist[pos] = temp

alist = [54,26,93,17,77,31,44,55,20]

selectionSort(alist)

print(alist)

Ex. No. : 6(a)

Date:

SELECTION SORT

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 FirstRanker Page 20 of 42

Output:

[17, 20, 26, 31, 44, 54, 55, 77, 93]

Result:

 Thus the Python Program to perform selection sort is successfully executed and the

output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 21 of 42

Aim:

 To write a Python Program to perform insertion sort.

Algorithm:

1. Create a function named insertionsort

2. Initialise currentvalue=alist[index] and position=index

3. while position>0 and alist[position-1]>currentvalue, perform the following till len(alist)

4. alist[position]=alist[position-1]

5. position = position-1

6. alist[position]=currentvalue

7. Print the sorted list

Program:

def insertionSort(alist):

 for index in range(1,len(alist)):

 currentvalue = alist[index]

 position = index

 while position>0 and alist[position-1]>currentvalue:

 alist[position]=alist[position-1]

 position = position-1

 alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]

insertionSort(alist)

print(alist)

Ex. No. : 6(b)

Date:

INSERTION SORT

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 22 of 42

Output:

 [17, 20, 26, 31, 44, 54, 55, 77, 93]

Result:

Thus the Python program to perform insertion sort is successfully executed and the output
is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 23 of 42

Aim:

 To write a Python Program to perform Merge sort.

Algorithm:

1. Create a function named mergesort

2. Find the mid of the list

3. Assign lefthalf = alist[:mid] and righthalf = alist[mid:]

4. Initialise i=j=k=0

5. while i < len(lefthalf) and j < len(righthalf), perform the following

if lefthalf[i] < righthalf[j]:

alist[k]=lefthalf[i]

Increment i

 else

 alist[k]=righthalf[j]

Increment j

Increment k

6. while i < len(lefthalf),perform the following

 alist[k]=lefthalf[i]

Increment i

Increment k

7. while j < len(righthalf), perform the following

alist[k]=righthalf[j]

Increment j

Increment k

8. Print the sorted list

Ex. No. : 7

Date:

MERGE SORT

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 24 of 42

 Program:

def mergeSort(alist):

 # print("Splitting ",alist)

 if len(alist)>1:

 mid = len(alist)//2

 lefthalf = alist[:mid]

 righthalf = alist[mid:]

 mergeSort(lefthalf)

 mergeSort(righthalf)

 i=j=k=0

 while i < len(lefthalf) and j < len(righthalf):

 if lefthalf[i] < righthalf[j]:

 alist[k]=lefthalf[i]

 i=i+1

 else:

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 while i < len(lefthalf):

 alist[k]=lefthalf[i]

 i=i+1

 k=k+1

 while j < len(righthalf):

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 #print("Merging ",alist)

alist = [54,26,93,17,77,31,44,55,20]

mergeSort(alist)

print(alist)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 25 of 42

Output:

[17, 20, 26, 31, 44, 54, 55, 77, 93]

Result:

Thus the Python program to perform merge sort is successfully executed and the output is
verifie

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 26 of 42

Aim:

 To write a Python program to find first n prime numbers.

Algorithm:

1. Read the value of n

2. for num in range(0,n + 1), perform the following

3. if num%i is 0 then break

else print the value of num

4. Repeat step 3 for i in range(2,num)

Program:

n = int(input("Enter the upper limit: "))

print("Prime numbers are")

for num in range(0,n + 1):
 # prime numbers are greater than 1
 if num > 1:
 for i in range(2,num):
 if (num % i) == 0:
 break
 else:
 print(num)

Ex. No. : 8

Date:

FIRST N PRIME NUMBERS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 27 of 42

Output:

Enter the upper limit:100
Prime numbers are
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

Result:

Thus the Python Program to find the first n prime numbers is executed successfully and
the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 28 of 42

Aim:

 To write a Python program to multiply matrices.

Algorithm:

1. Define two matrices X and Y

2. Create a resultant matrix named ‘result’
3. for i in range(len(X)):

 i. for j in range(len(Y[0])):

a) for k in range(len(Y))

b) result[i][j] += X[i][k] * Y[k][j]

4. for r in result, print the value of r

Program:

X = [[12,7,3],

 [4 ,5,6],

 [7 ,8,9]]

Y = [[5,8,1,2],

 [6,7,3,0],

 [4,5,9,1]]

result = [[0,0,0,0],

 [0,0,0,0],

 [0,0,0,0]]

for i in range(len(X)):

 for j in range(len(Y[0])):

 for k in range(len(Y)):

 result[i][j] += X[i][k] * Y[k][j]

for r in result:

 print(r)

Ex. No. : 9

Date:

MATRIX MULTIPLICATION

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 29 of 42

Output:

[114, 160, 60, 27]

[74, 97, 73, 14]

[119, 157, 112, 23]

Result:

Thus the Python program to multiply matrices is executed successfully and the output is
verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 30 of 42

Aim:

 To write a Python program for command line arguments.

Algorithm:

1. Add arguments to find the words and lines

2. Add the filename as argument

3. Parse the arguments to get the values

4. Format and print the words and lines

Program:

parser=argparse.ArgumentParser()

parser.add_argument('--words','-w',action='store_true')

parser.add_argument('--lines','-l',action='store_true')

parser.add_argument('filename')

args=parser.parse_args()

if args.words:

 print("words {}".format(print_words(args.filename))

elif args.lines:

 print("lines {}".format(print_lines(args.filename))

else:

 print ("words {}".format(print_words(args.filename))

 print("lines {}".format(print_lines(args.filename))

Ex. No. :10

Date:

COMMAND LINE ARGUMENTS(WORD COUNT)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 31 of 42

Output:

python main.py –i input.txt
words 23
lines 1

Result:
Thus the Python program for command line arguments is executed successfully and the output is
verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 32 of 42

Aim:

 To write a Python program to find the most frequent words in a text read from a file.

Algorithm:

1. Read the filename

2. Open the file in read mode

3. Read each line from the file to count the lowers and words

4. Read each line from the file to replace the punctuations

5. Split each line into words and count them

6. Print the words and counts

Program:
def main():
 filename=raw_input("enter the file").strip()
 infile=open(filename,"r")
 wordcounts={}
 for line in infile:
 processLine(line.lower(),wordcounts)
 pairs=list(wordcounts.items())
 items=[[x,y] for (y,x) in pairs]
 items.sort()
 for i in range(len(items)-1,len(items)-11,-1):
 print(items[i][1]+"\t"+str(items[i][0]))
def processLine(line,wordcounts):
 line=replacePunctuations(line)
 words=line.split()
 for word in words:
 if word in wordcounts:
 wordcounts[word]+=1
 else:
 wordcounts[word]=1
def replacePunctuations(line):
 for ch in line:
 if ch in "~@#$%^&*()_-+=<>?/.,:;!{}[]''":
 line=line.replace(ch," ")
 return line
main()

Ex. No. : 11

Date:

FINDING MOST FREQUENT WORDS IN A TEXT READ FROM A FILE

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 33 of 42

 Output:

Enter a filename:a.txt

Hi 1

How 1

Are 1

You 1

Result:

Thus the Python program to find the most frequent words in a text read from a file is
executed successfully and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 34 of 42

Aim:

 To write a Python program to simulate elliptical orbits in Pygame.

Algorithm:

1. Import the required packages

2. Set up the colours for the elliptical orbits

3. Define the parameters to simulate elliptical orbits

4. Display the created orbits

Program:

import math

import random

import pygame

class Particle ():

 def __init__ (self, x, y, colour=0x000000):

 self.x = x

 self.y = y

 self.vx = 0

 self.vy = 0

 self.colour = colour

 def apply_gravity (self, target):

 dsqd = (self.x - target.x) ** 2 + (self.y - target.y) ** 2

 #g = G*m/dsqd * normalized (self - target)

 if dsqd == 0:

 return

 self.vx += -1 / dsqd * (self.x - target.x) / dsqd ** 0.5

 self.vy += -1 / dsqd * (self.y - target.y) / dsqd ** 0.5

 def update (self):

 self.x += self.vx

 self.y += self.vy

pygame.init()

window = pygame.display.set_mode ((600, 400))

main_surface = pygame.Surface ((600, 400))

colours = [0x000000, 0x111111, 0x222222, 0x333333, 0x444444, 0x555555, 0x666666,

0x777777, 0x888888, 0x999999, 0xaaaaaa, 0xbbbbbb] + [0xFF0000, 0x00FF00, 0x0000FF,

0xFFFF00, 0xFF00FF, 0x00FFFF, 0x888888, 0xFFFFFF, 0x808000, 0x008080, 0x800080,

0x800000]

#colours = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF, 0x888888,

Ex. No. : 12

Date:

SIMULATE ELLIPTICAL ORBITS IN PYGAME

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 35 of 42

0xFFFFFF, 0x808000, 0x008080, 0x800080, 0x800000]

particles = [Particle (200, 100, colours [i]) for i in range (20)]

earth = Particle (200, 200)

for i, p in enumerate (particles):

 p.vx = i / 100

while (True):

main_surface.fill(0x000000)

 pygame.draw.circle (main_surface, 0x00FF00, (earth.x, earth.y), 5, 2)

 for p in particles:

 p.apply_gravity (earth)

 p.update ()

 pygame.draw.circle (main_surface, p.colour, (int (p.x), int (p.y)), 5, 2)

 window.blit(main_surface, (0, 0))

 pygame.display.flip()

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 36 of 42

 Output:

Result:

Thus the Python Program to simulate elliptical orbits using Pygame is executed
successfully and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 37 of 42

Aim:

 To write a Python program to bouncing ball in Pygame.

Algorithm:

1. Import the required packages

2. Define the required variables

3. Define the screen space to display the bouncing balls in that space

Program:
import sys
import pygame
pygame.init()

size = width, height = 320, 240
speed = [2, 2]
black = 0, 0, 0

screen = pygame.display.set_mode(size)

ball = pygame.image.load('C:\\Users\\admin\\Desktop//ball.jpg')
ballrect = ball.get_rect()

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()

 ballrect = ballrect.move(speed)
 if ballrect.left < 0 or ballrect.right > width:
 speed[0] = -speed[0]
 if ballrect.top < 0 or ballrect.bottom > height:
 speed[1] = -speed[1]

 screen.fill(black)
 screen.blit(ball, ballrect)
 pygame.display.flip()

Ex. No. : 13

Date:

SIMULATE BOUNCING BALL USING PYGAME

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 38 of 42

 Output:

Result:

Thus the Python Program to simulate bouncing ball using Pygame is executed
successfully and the output is verified.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 39 of 42

VIVAVOCE QUESTIONS:
1. What it the syntax of print function?
2. What is the usage of input function?
3. Define a variable.
4. What is type conversion?
5. Mention the data types in Python
6. What are the attributes of the complex datatype?
7. Mention a few escape sequences.
8. Define an expression
9. What is the usage of ** operator in Python?
10. Give the syntax of if else statement.
11. Give the syntax of for statement.
12. How is range function used in for?
13. Give the syntax of while statement.
14. What are multi way if statements?
15. How is random numbers generated?
16. Define a function.
17. Give the syntax of function.
18. What are the types of arguments in function.?
19. What is a recursive function?
20. What are anonymous functions?
21. What are default arguments?
22. What are variable length arguments?
23. What are keyword arguments?
24. Mention the use of map().
25. Mention the use of filter().
26. Mention the use of reduce().
27. Define a string.
28. How is string slicing done?
29. What is the usage of repetition operator?
30. How is string concatenation done using + operator>
31. Mention some string methods
32. How is length of a string found?
33. How is a string converted to its upper case?
34. `Differentiate isalpha() and isdigit().
35. What is the use of split()?
36. Define a file.
37. Give the syntax for opening a file.
38. Give the syntax for closing a file.
39. How is reading of file done?
40. How is writing of file done?
41. What is a list?
42. Lists are mutable-Justify.
43. How is a list created?
44. How can a list be sorted?
45. How are elements appended to the list?
46. How is insert() used in list?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 40 of 42

47. What is the usage of pop() in list?
48. Define a tuple.
49. Are tuples mutable or immutable?
50. Mention the use of return statement.
51. What is a Boolean function?
52. How is main function defined?
53. What is a dictionary?
54. How are tuples created?
55. How is a dictionary created?
56. How to print the keys of a dictionary?
57. How to print the values of a dictionary?
58. How is del statement used?
59. Can tuple elements be deleted?
60. What is Python interpreter?
61. Why is Python called an interpreted language?
62. Mention some features of Python
63. What is Python IDLE?
64. Mention some rules for naming an identifier in Python.
65. Give points about Python Numbers.
66. What is bool datatype?
67. Give examples of mathematical functions.
68. What is string formatting operator?
69. Mention about membership operators inPython.
70. How is expression evaluated in Python?
71. What are the loop control statements in Python?
72. What is the use of break statement?
73. What is the use of continue statement?
74. What is the use of pass statement?
75. What is assert statement?
76. Differentiate fruitful function s and void functions.
77. What are required arguments ?
78. Differentiate pass by value and pass by reference.
79. Mention few advantages of function.
80. How is lambda function used?
81. What is a local variable?
82. What are global variables?
83. What are Python decorators?
84. Are strings mutable or immutable?
85. What is join()?
86. What is replace() method?
87. What is list comprehension?
88. Define multidimensional list.
89. How to create lists using range()?
90. What is swapcase() method?
91. What is linear search?
92. How is binary search done?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 41 of 42

93. How is merge sort performed?
94. What is sorting?
95. How is insertion sort done?
96. How is selection sort done?
97. What are command line arguments?
98. Name some built in functions with dictionary.
99. What is an exception?
100. How is exception handled in python?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

GE8161 FirstRanker Page 42 of 42

LIST OF MINI PROJECTS

1.ATM Generation

2.Dice Rolling simulator

3.Library Management System

4.Restaurant Management System

5.Calendar Application

6.Guessing Birthdays

7.Loan Calculator

8.Text Animation

9. Spell Checker

10.Data Retrieval from Web

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

