Roll No.
Total No. of Pages : 02
Total No. of Questions : 08

M.Tech.(ECE) (2018 Batch) (Sem.-1)
 STATISTICAL INFORMATION PROCESSING
 Subject Code : MTEC-PE1X-18-3
 M.Code : 75176

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE questions out of EIGHT questions.
2.Each question carries TWELVE marks.

Q1. a) Describe cumulative distribution function (CDF) and probability density function (PDF) and their properties.
b) Let X be a continuous random variable with the following PDF

$$
f_{x}(x)= \begin{cases}c x^{2} & |x| \leq 1 \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

where c is a positive constant.
Find the value of constant $c, E(X)$ and $P\left(X \geq \frac{1}{2}\right)$.

Q2. a) $\mathrm{U}(\mathrm{t})$ is the input to an LTI system with impulse response $h(t)=\delta(t)+t e^{-a t} . \mathrm{U}(\mathrm{t})$ is a WSS process with mean of 3 . Find the mean of the output of the system.
b) Briefly explain the characteristics of a hidden Markov model (HMM). Why such model is called 'hidden'? Mention some application areas for HMM.

Q3. a) Explain the following in brief:
i) Tchebycheff inequality theorem.
ii) Ergodicity
b) What is the relation between autocorrelation and power spectral density? Describe various properties of power spectral density.

Q4. a) Explain the Neyman-Pearson decision criterion in detail.
b) Consider the binary decision problem with :

$$
\begin{gather*}
p\left(z / m_{1}\right)=\frac{1}{\sqrt{2 \pi}} \exp \frac{-z^{2}}{2} \\
p\left(z \mid m_{2}\right)=\frac{1}{\sqrt{2 \pi}} \exp \frac{-(z-1)^{2}}{2} \tag{6}
\end{gather*}
$$

Determine the Neyman-Pearson decision rule for $\mathrm{P}\left\{d_{2} \mid m_{1}\right\}=0.25$.
Q5. a) Explain the Maximum A Posteriori (MAP) estimation in detail.
b) Suppose that we have observed the random sample $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$, where $X_{i} \sim N$ $\left(\theta_{1}, \theta_{2}\right)$, so

$$
\begin{equation*}
f_{x_{i}}\left(x_{i} ; \theta_{1}, \theta_{2}\right)=\frac{1}{\sqrt{2 \pi \theta_{2}}} e^{-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}} \tag{6}
\end{equation*}
$$

Find the maximum likelihood estimators for θ_{1} and θ_{2}.
Q6. a) Write a short note on
i) Bartlett Method
ii) Welch Modification
b) Define Mutual information. List the várious properties of Mutual information and prove that $\mathrm{I}(X ; Y)=H(X)+H(Y)-H(X, Y)$

Q7. a) Write in detail about the Lempel-Ziv-Welch data compression technique.
b) Explain the Shannon-Fanocoding with the help of suitable example.

Q8. a) What are the conditions for a set R to be considered a Ring ?
b) What are the merits and demerits of using BCH coding?
c) A Reed-Solomon code is $\operatorname{RS}(255,223)$ with 8 -bit symbols. What is the length of data symbol and parity symbol? How many maximum bytes of error can be corrected by the corresponding Reed-Solomon decoder?

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

