FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com



Total No. of Pages : 02

Total No. of Questions : 8

# M.Tech.(EE) (2018 Batch) (Sem.-1) POWER SYSTEM DYNAMICS-I Subject Code : MTEE-102-18 M.Code : 75216

## Time : 3 Hrs.

Max. Marks : 60

### INSTRUCTIONS TO CANDIDATES :

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWELVE marks.
- 3. Assume any missing data appropriately

| 1. | a) | Explain dis-advantages of per unit system of parameter measurement. (                                     | 6)       |
|----|----|-----------------------------------------------------------------------------------------------------------|----------|
|    | b) | Prove by Power Invariance upon transformation from three axis to two axis?                                | 6)       |
| 2. | a) | Derive an expression for transformer and speed voltages developed in the armature a two pole DC machine.  | of<br>6) |
|    | b) | Describe physical concept of Park's Transformation.                                                       | 6)       |
| 3. | a) | Write state-space model of synchronous motor using d-q axis theory.                                       | 6)       |
|    | b) | Explain connection matrix (C) used in Park's transformation.                                              | 6)       |
| 4. | a) | Classify the power system disturbances occurring as small signal and large signal. (                      | 6)       |
|    | b) | What is the purpose of power system stabilizer, and also explain its functioning with the help of blocks? | th<br>6) |
| 5. |    | aw and explain block diagram of SMIB considering effects of synchronous machined circuit dynamics.        | ne<br>2) |
| 6. | a) | Draw and explain induction motor equivalent circuit from steady state stability poil of view.             | nt<br>6) |
|    | b) | Explain the synchronous generator excitation control methods employed.                                    | 6)       |

1 M-75216

(\$35)-2334





#### www.FirstRanker.com

www.FirstRanker.com

 Figure below shows the single line diagrams of thermal generating station consisting of four 555MVA, 24kV, 60Hz units. (12)



#### Fig.1 Single line diagram of SMIB

The post fault condition in per unit on the 2220MVA, 24kV base is as given below :

| Parameter | Value | Parameter      | Value           | Parameter | Value                |
|-----------|-------|----------------|-----------------|-----------|----------------------|
| $X_d$     | 1.81  | $T'_{do}$      | 8.0             | Р         | 0.9                  |
| $X_q$     | 1.76  | Н              | 3.5<br>MW-s/MVA | Q         | 0.3<br>(overexcited) |
| $X'_{d}$  | 0.3   | K <sub>D</sub> | 0,10,-10        | $E_t$     | 1.0∠36°              |
| $X_t$     | 0.16  | Ra             | 0,003           | $E_B$     | 0.995∠0°             |

If the generators are to be modeled as a single equivalent generator represented by the classical model. Write the linearized state equation of the system. Determine the eigenvalues, left and right eigen vectors, and participation matrix for K<sub>D</sub>=10 damping coefficient (in pu torque/pu speed).

 The following parameters are in per unit on machine rating of a 555MVA, 24kV, 0.9 p.f. 60Hz, 3600 prm turbine-generator :

|   | $L_{ad}$      | 1.66   | $L_{qq}$ | 1.61    | $L_l$    | 0.15   | $R_a$    | 0.003   |
|---|---------------|--------|----------|---------|----------|--------|----------|---------|
| Γ | $L_{\beta d}$ | 0.165  | Rfd      | 0.0006  | $L_{ld}$ | 0.1713 | $R_{Id}$ | 0.0284  |
|   | $L_{lq}$      | 0.7252 | $R_{Iq}$ | 0.00619 | $L_{2q}$ | 0.125  | $R_{2q}$ | 0.02368 |

Likd is assumed to be equal to Lad

When the generator is delivering rated MVA at 0.9 pf(lag) and rated terminal voltage, compute the following :

- a) The Internal angle δ<sub>i</sub> in electrical degrees.
  (6)
- b) Per unit values of  $e_d$ ,  $e_q$ ,  $i_d$ ,  $i_q$ ,  $i_{1d}$ ,  $i_{2q}$ ,  $i_{fd}$ ,  $e_{fd}$  (6)

Assume that the effect of magnetic saturation at the given operating condition is to reduce  $L_{ad}$  and  $L_{ag}$  to 80% of the values given above.

#### NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-75216



(\$35)-2334