

www.FirstRanker.com

www.FirstRanker.com

Roll No.						Τ	Т	Г	Г
KOII NO.	-	_		_	_	_	_	_	_

Total No. of Questions: 08

M.Tech.(ME) (Sem.-1)

OPTIMIZATION TECHNIQUES

Subject Code : MME-501

M.Code: 38202

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

1. Attempt any FIVE questions out of EIGHT questions.

2. Each question carries TWENTY marks.

- Q1. a) Explain the important characteristics of the industrial situation to which I.P. method can be successfully applied. Illustrate application of these technique with a suitable example.
 - b) A company sells two different products A and B the company makes a profit of Rs. 40 and Rs. 30 on two products respectively. They are produced by a common production process and are sold in two different markets. The production process has a capacity of 30,000 man hours. It takes 3 hours to produce a unit of A and 1 hour to produce a unit of B. The maximum number of Units of A and B that can be sold in the market are 8000 and 12,000 respectively. Formulate the above as linear programming model.
- Q2. A person require 10, 12 and 12 units of chemical A, B and C respectively for his garden. A liquid product contains 5, 2 and 1 unit of A, B and C respectively per jar. A dry product contains 1, 2 and 4 units of A, B and C per carton. If the liquid product sells for Rs. 3 per jar and the dry product sells for Rs. 2 per carton. How many of these should be purchased to minimize the cost and meet the requirement.
- Q3. Obtain the initial solution by VAM and optimal solution by MODI method for the transportation problem shown below:

		A	В	C	Supply
	W1	5	4	6	65
	W2	7	4	7	42
Demand	W3	8	6	7	43

www.FirstRanker.com

www.FirstRanker.com

Q4. Five machine are to be located in the machine shop. There are five possible locations in which the machine can be located. C_{ij} the cost of placing i in place j is given in the table below.

		Place							
		1	2	3	4	5			
	1	15	10	25	25	10			
	2	1	8	10	20	2			
Machine	3	8	9	17	20	10			
	4	14	10	25	27	15			
	5	10	8	25	27	12			

It is required to place the machines at suitable place so as to minimize the total cost.

- a) Formulate an L.P. model to find an optimal assignment.
- b) Solve the problem by assignment technique of L.P.
- Q5. Consider the following table:

Activity	Predecessor		Times in Weeks	
	Activity	t _{o ∢}	, t _m	t,
A		<u>2</u> 2	3	10
В	- ~ ~	2	3	4
C	A	1	2	3
D	· (A	4	6	14
E	В	4	5	12
F	, C	3	4	5
JG"	D,E	1	1	7

- a) Draw the network diagram path.
- b) Find the critical path and variance of each event.
- c) What is the probability that the project will be completed in 16 weeks?
- Q6. a) What is dynamic programming? Write step by step procedure to solve a general problem by D.P.
 - b) Write the algorithm for Fibonacci search method.

2 | M - 38202 (S9) - 503

www.FirstRanker.com

www.FirstRanker.com

(59)-503

Q7. Solve the following game by the principle of dominance :

		Player B								
		I	II	III	$_{\rm IV}$	V	VI			
	1	4	2	0	2	1	1			
	2	4	3	1	3	2	2			
Player A	3	4	3	7	-1	1	2			
	4	4	3	4	-5	2	2			
	5	4	3	3	-2	2	2			
the minimum of the function using the Newton-Raphson $\lambda 1 = 0.1$. Use $\varepsilon = 0.01$ for checking the convergence. $f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65\lambda \tan^{-1} \frac{1}{\lambda}$										
non!Fil	5									

O8. Find the minimum of the function using the Newton-Raphson method with the starting point $\lambda 1 = 0.1$. Use $\varepsilon = 0.01$ for checking the convergence.

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65\lambda \tan^{-1} \frac{1}{\lambda}$$

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

3 | M - 3 8 2 0 2