

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages: 01
----------	------------------------

Total No. of Questions: 08

M.Tech. (Electrical Power System) (2018 Batch) (Sem.-2) DYNAMICS OF ELECTRICAL MACHINES

Subject Code: EEPS-203C-18 M.Code: 76086

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWELVE marks.
- Derive voltage equation of a primitive four winding machine.
- Deduce Parks transformations relating the 3-phase currents of a synchronous machine to its corresponding d-q axis currents. Express three phase currents in terms of d-q axes currents and its inverse.
- Analyze torque equation of a simple DC machine using primitive machine equation.
- Draw generalized mathematical model to induction machine and obtain transformed impedance matrix.
- Derive synchronous machine equations for small oscillations.
- Explain dynamic performance of an alternator feeding induction motor.
- A D.C motor is coupled to D.C. generator and acting as prime mover to generator. Obtain c-matrix of interconnected system and derive combined Z matrix in steady state operation.
- An alternator is supplying to synchronous motor and are in synchronism. Obtain steady state matrix equation of the system.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

1 M-76086 (S35)-2720

