FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 18

MCA (2015 to 2018) (Sem.-2) MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Subject Code : MCA-201 M.Code : 72876

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks each and students has to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.
- 3. Use of non-programmable scientific calculator is allowed.

SECTION-A

- 1. Define Simple and Multi-graph. Prove that an undirected graph possesses an Eulerian path if it is connected and has either zero or two vertices of odd degree.
- 2. a) State and prove Five color theorem.
 - b) Explain the shortest path problem and also explain the algorithms used to find shortest path.

SECTION-B

- 3. a) Show that $A \cap (B \cap C) = (A \cap B) \cap C$.
 - b) Define intersection and union of sets. Prov e that $A \cup B = A \cap B$ if A = B.
- 4. a) Define Minsets. Let B₁, B₂, B₃ are the subsets of a universal set U. Find all minsets generated by B₁, B₂ and B₃.
 - b) Define Partitions of sets. Give all the partitions of {a, b, c, d, e}.

SECTION-C

- 5. a) Test the validity of: If he works hard then he will be successful. If he is successful then he will be happy. Therefore, hard work leads to happiness.
 - b) Prove that disjunction distributes over conjunction.
- 6. a) Use Mathematical induction to show that $1 + 2 + \dots + 2^n = 2^{n-1} 1$.
 - b) Define Quantifiers. Explain different types of quantifiers along with examples.

1 | M- 72876

136

www.FirstRanker.com

www.FirstRanker.com

SECTION-D

- 7. Solve by Gauss Elimination method : x - 2y - 6z = 12, 2x + 4y + 12z = -17, x - 4y - 12z = 22.
- Solve by matrix inversion method : x y + 3z = 2, 2x + y + 2z = 2, -2x 2y + z = 3. 8.

SECTION-E

Answer briefly :

- Define Complete Bipartite graph and give one example. 9.
- Define Euler and Hamilton graphs. 10.
- 11. Define Complement of set and give example.
- 12. Can we say that Cartesian product is commutative? Justify.
- 13. Define Uncountable set.
- 14. Define tautologies and contradictions.
- 15. Prove that $p \wedge q = q \wedge p$.
- INKer.com 16. Define Symmetric and Skew-Symmetric
- 17. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$, Find AB.
- 18. Define inverse of a Square matrix and find the inverse of $\begin{vmatrix} 1 & -1 \\ 3 & 4 \end{vmatrix}$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-72876

136