Roll No. \square Total No. of Pages : 03
Total No. of Questions: 18

```
BBA (2014 to 2017) / BRDM / B.SIM (2014 & onwards) (Sem. 2)
BUSINESS MATHEMATICS
    Subject Code : BBA-203
M.Code : 10546
```


Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B consists of FOUR Sub-sections: Units-I, II, III \& IV.
3. Each Sub-section contains TWO questions each, carrying TEN marks each.
4. Students have to attempt any ONE question from each Sub-section.

SECTION-A

1. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Find the values of m and n.
2. State De-Morgan's Law.
3. In a class of 25 students, 12 have taken economics, 8 have taken economics but not politics. Find the number of students who have taken economics \& politics and those who have taken politics but not economics.
4. Show by means of an example that the product of two non-zero matrices can be a zero matrix.
5. Let $\mathrm{A}=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5\end{array}\right)$ then show that $|3 \mathrm{~A}|=27|\mathrm{~A}|$.
6. Without expanding prove $\left|\begin{array}{rrr}9 & 9 & 12 \\ 1 & -3 & -4 \\ 1 & 9 & 12\end{array}\right|=0$.
7. Use logarithms to solve the following equation : $3^{x}=2$.
8. Given $y=(4 x+3)^{-5}$, find $\frac{d y}{d x}$.
9. Differentiate $\sin ^{2} x^{3}$ w.r.t. x.
10. Find the $3^{\text {rd }}$ term of $\left(3 x-\frac{y^{3}}{6}\right)^{4}$

SECTION-B

UNIT-I

11. a) State and prove inclusion-exclusion principle.
b) If A, B, C be any three sets, then prove that

$$
(\mathrm{AUB}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{C}) \mathrm{U}(\mathrm{~B} \times \mathrm{C}) .
$$

12. In a town of 10,000 families, it was found that 40% families buy newspaper $\mathrm{A}, 20 \%$ families buy newspaper B and 10% newspaper C, 5% buy A and B, 3% buy B and C and 4% buy A and C . If 2% families buy all the three newspapers, find the number of families which buy
a) A only
b) B only
c) only C
d) none of A, B and C .

UNIT-II

13. If $A=\left(\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{rrr}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right)$, find the product $A B$ and use this result to solve the following system of linear equations :
$2 x-y+z=-1 ;-x+2 y-z=4: x-y+2 z=-3$.
14. Using properties of determinants, prove that :
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=(a+b+c)\left(a b+b c+c a-a^{2}-b^{2}-c^{2}\right)$.

UNIT-III

15. Show that of all rectangles with a given perimeter, the square has the largest area.
16. Differentiate the following function w.r.t. x :
a) $\tan ^{-1} x^{4}$
b) $\log \log \log x^{3}$.

UNIT-IV

17. The coefficients of $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio $1: 3: 5$. Find both n and r.
18. a) State and prove Logarithmic Base changing formula.
b) The value of machine when new is Rs. 20,000. It depreciates in its value at the rate of 3% per annum in the first 4 years and then at the rate of 5% per annum in the next six years. What will be its value after 10 years?
