Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech.(Automation \& Robotics) (2018 Batch) (Sem.-3)
 MATHEMATICS-III
 Subject Code : BTAR-303-18
 M.Code : 76502

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Explain the Dirichlet conditions for a function to be expressed in terms of Fourier series.
b) Find Laplace Transform of $e^{-t} \cos ^{2} t$
c) Find Laplace Inverse Laplace transform of $\frac{1}{s^{2}+s+1}$.
d) Define ordinary point and regular singular point.
e) Express $f(x)=x^{2}+2 x+1$ in terms of Lagendre function.
f) Form a partial differential equation from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
g) Solve the partial differential equation $y z \frac{\partial z}{\partial x}+x z \frac{\partial z}{\partial y}=x y$.
h) Evaluate $\int_{C} \frac{z-3}{z^{2}+2 z+5}, C:|z|=2$.
i) Show that $\sin \mathrm{z}$ is analytic function
j) Define even function and write fourier series for an even function in the interval $(-\mathrm{c}, \mathrm{c})$, provided it satisfies all the conditions.

SECTION-B

2. Find the Fourier series for $f(x)$ in the interval $(-\pi, \pi)$ when $f(x)=\left\{\begin{array}{ll}\pi+x, & -\pi<x<0 \\ \pi-x, & 0<x<\pi\end{array}\right.$.
3. Solve the differential equation using Method of Laplace transform

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+5 y=\sin 5 t, y(0)=0, y^{\prime}(0)=0
$$

4. Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$
5. Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurents series, valid for (i) $1<|z|<3$
6. Solve the Partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=x+y
$$

SECTION-C

7. a) Find half-range cosine series for $f(x)=x$ in the interval $[0, \pi]$
b) Define Unit step function and find its Laplace transform.
8. Evaluate $\int_{0}^{\infty} \frac{\cos x}{x} d x$ by contour integration.
9. A homogeneous conducting rod of length 100 cm has its ends kept at zero temperature and temperature initially is

$$
u(x, 0)=\left\{\begin{array}{cr}
x & 0 \leq x<50 \\
100-x, & 50 \leq x \leq 100
\end{array}\right.
$$

Find the temperature $u(x, t)$ at any time t.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

