

DEPARTMENT OF PETROLEUM ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG - R20

B. TECH - PETROLEUM ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

WWWSFIRSTRANKernaam EngineerWyWWFirstRankernaom1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

COURSE STRUCTURE

I Year – I SEMESTER

Sl. No	Course Code	Subjects	L	Т	P	Credits
1		Mathematics – I (Calculus & Differential Equations)	3	0	0	3
2		Engineering Chemistry	3	0	0	3
3		English	3	0	0	3
4		Engineering Drawing	1	0	4	3
5		Programming for Problem Solving Using C	3	0	0	3
6		English – Communication Skills Lab	0	0	3	1.5
7		Engineering Chemistry LAB	0	0	3	1.5
8		Programming for Problem Solving Using C Lab	0	0	3	1.5
9		Constitution of India	2	0	0	0
		Total Credits				19.5

I Year – II SEMESTER

Sl. No	Course Code	Subjects	L	Т	P	Credits
1	HS1201	Mathematics – II (Linear Algebra & Numerical Methods)	3	0	0	3
2	BS1203	Engineering Physics	3	0	0	3
3	BS1208	Engineering Mechanics	3	0	0	3
4	ES1204	Elements of Mechanical Engineering	3	0	0	3
5	PT1201	Basic Electrical & Electronics Engineering	3	0	0	3
6	HS1203	Engineering Workshop & IT Workshop LAB	0	0	3	1.5
7	BS1209	Engineering Physics LAB	0	0	3	1.5
8	ES1220	Basic Engineering (Mechanical & Electrical) LAB	0	0	3	1.5
9	PR1201	Professional Ethics & Human Values	2	0	0	0
	·	Total Credits				19.5

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	C
1 Tear - 1 Semester		3	0	0	3
	MATHEMATICS-I (Calculus & Differential				
	Equations)				

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about the behaviour of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems(L5)

UNIT – I: Sequences, Series and Mean value theorems:

(10hrs)

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

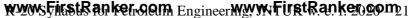
UNIT – II: Differential equations of first order and first degree: (10hrs)

Linear differential equations—Bernoulli's equations—Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling— Law of natural growth and decay— Orthogonal trajectories— Electrical circuits.

UNIT – III: Linear differential equations of higher order:

(10hrs)


Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations. Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

(10hrs)

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

DEPARTMENT OF PETROLEUM ENGINEERING

UNIT – V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates.

Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B. V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **Joel Hass, Christopher Heil and Maurice D. Weir,** Thomas calculus, 14thEdition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. **Srimantha Pal, S C Bhunia,** Engineering Mathematics, Oxford University Press.

www.FirstRanker.com

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	С
1 Year - 1 Semester		3	0	0	3
	ENGINEERING CHEMISTRY				

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increases in demand as wide variety of advanced materials are introduced; which have excellent engineering properties.
 - *Classify and discuss* the materials used in major industries like steel industry, metallurgical industries and construction industries and electrical equipment manufacturing industries. Lubrication is also *summarized*.
- *Relate* the need of fuels as a source of energy to any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence introduced.
- *Explain* the importance and usage of water as basic material in almost all the industries; *interpret* drawbacks of steam boilers and also how portable water is supplied for drinking purposes.

UNIT I: POLYMER TECHNOLOGY

8 hrs

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

• *Analyze* the different types of composite plastic materials and *interpret* the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

10 hrs

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion,

corrosion control (proper designing and cathodic protection), Protective coatings (surface

DEPARTMENT OF PETROLEUM ENGINEERING

preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

Course Outcomes: At the end of this unit, the students will be able to

• *Utilize* the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

UNIT III: CHEMISTRY OF MATERIALS

10

hrs

Part- A:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]) with example (TiO₂), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications)

Thermal analysis techniques: Instrumentation and applications of thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC).

Part-B:

Refractories: - Definition, classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.

Lubricants: - Definition, mechanism of lubricants, properties (definition and importance).

Cement: - Constituents, manufacturing, parameters to characterize the clinker formation: lime saturation factor (LSF), silica ratio (SR) and alumina ratio (AR), chemistry of setting and hardening, deterioration of cement.

Course Outcomes: At the end of this unit, the students will be able to

- Synthesize nanomaterials for modern advances of engineering technology.
- Summarize the techniques that detect and measure changes of state of reaction.
- *Illustrate* the commonly used industrial materials.

UNIT IV: FUELS 10 hrs

Introduction, calorific value, higher calorific value, lower calorific values, problems using Dulong's formula, proximate and ultimate analysis of coal sample and their significance, numerical problems, petroleum (refining-cracking), synthetic petrol (Fischer Tropsch and Bergius), petrol knocking, diesel knocking, octane and cetane ratings, anti-knocking agents, Introduction to alternative fuels (Bio-diesel, ethanol, methanol, natural gas, liquefied petroleum gas, compressed natural gas), Flue gas analysis by Orsat apparatus, rocket fuels.

Course Outcomes: At the end of this unit, the students will be able to

- *Differentiate* petroleum, petrol, synthetic petrol and have knowledge how they are produced.
- *Study* alternate fuels and a*nalyse* flue gases.

UNIT V: WATER TECHNOLOGY

8 hrs

Hardness of water, determination of hardness by complexometric method, boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement), internal treatments, softening of hard water (zeolite process and related sums, ion exchange process), treatment of industrial waste water, potable water and its specifications, steps involved in purification of water, chlorination, break point chlorination-desalination (reverse osmosis and electro dialysis).

Course Outcomes: At the end of this unit, the students will be able to

• Analyze the suitable methods for purification and treatment of hard water and brackish

DEPARTMENT OF PETROLEUM ENGINEERING

Standard Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- **2.** Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation** and characterization of materials" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "Textbook of Nanoscience and Nanotechnology", University press (latest edition)

www.FirstRanker.com

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	C
1 Tear - 1 Semester		3	0	0	3
	ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- > Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- ➤ Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- ➤ Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- > understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- > employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

Unit 1:

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications.

(Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions both in speaking and writing.

www.firstRanker.gom Engineerwy.w.FirstRanker.gom21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information. **Reading for Writing:** Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

Unit 2:

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansodefrom "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words **Unit 3**:

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

www.firstRanker.gom Engineerwy.w.FirstRankerogom1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words

Unit 4:

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

Unit 5:

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications. (Non-detailed)

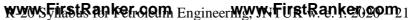
Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.


Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory:

- 1. "Infotech English", Maruthi Publications. (Detailed)
- 2. "The Individual Society", Pearson Publications. (Non-detailed) www.FirstRanker.com

DEPARTMENT OF PETROLEUM ENGINEERING

Reference books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

MWW.FirstPanker.com

www.firstRanker.gom Engineerwy.w.FirstRanker.gom21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	C
		1	0	4	3
	ENGINEERING DAWING				

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to present the projections of the various types of solids in different positions inclined to present the projections of the various types of solids in different positions inclined to projections.

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	C
1 Year - 1 Semester		3	0	0	3
PROGE	PROGRAMMING FOR PROBLEM SOLVING USING C				

Course Objectives:

The objectives of Programming for Problem Solving Using C are

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File I/O and significance of functions

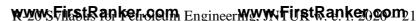
Course Outcomes:

Upon the completion of the course the student will learn

- To write algorithms and to draw flowcharts for solving problems
- To convert flowcharts/algorithms to C Programs, compile and debug programs
- To use different operators, data types and write programs that use two-way/ multiway selection
- To select the best loop construct for a given problem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modular reusable code
- To apply File I/O operations

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers


Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Oualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions.

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples.

DEPARTMENT OF PETROLEUM ENGINEERING

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application.

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application.

Processor Commands: Processor Commands.

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Text Books:

- Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE.
- 2) The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson.

Reference Books:

- 1) Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.
- 2) Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson.
- 3) Computer Fundam

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Voor I Somoston		L	T	P	C
I Year - I Semester		0	0	3	1.5
EN	IGLISH - COMMUNICATION SKILLS LAB				

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions in speaking.

UNIT V:

Newspapers reading; Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book:

1. "Infotech English", Maruthi Publications.

References:

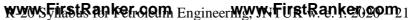
- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I		L	T	P	С
Semester		0	0	3	1.5
	ENGINEERING CHEMISTRY LAB				


Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions,

volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn⁺² using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Cu⁺² using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe⁺³ by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg⁺² present in an antacid.
- 13. Determination of CaCO₃ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

DEPARTMENT OF PETROLEUM ENGINEERING

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

MWW.FirstRanker.com

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	C
		0	0	3	1.5
PROGRAM	IMING FOR PROBLEM SOLVING USING C	LAE	3		

Course Objectives:

- Apply the principles of C language in problem solving.
- To design flowcharts, algorithms and knowing how to debug programs.
- To design & develop of C programs using arrays, strings pointers & functions.
- To review the file operations, preprocessor commands.

Course Outcomes:

By the end of the Lab, the student

- Gains Knowledge on various concepts of a C language.
- Able to draw flowcharts and write algorithms.
- Able design and development of C problem solving skills.
- Able to design and develop modular programming skills.
- Able to trace and debug a program

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables.

Exercise 2:

- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- 3. Write a C program to calculate the factorial of a given number.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not.

DEPARTMENT OF PETROLEUM ENGINEERING

Exercise 5:

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function.

DEPARTMENT OF PETROLEUM ENGINEERING

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

MMM.FirstRanker.com

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - I Semester		L	T	P	C
1 rear - 1 Semester		2	0	0	0
	CONSTITUTION OF INDIA				

Course Objectives:

- > To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- ➤ To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- ➤ To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions;

Learning outcomes:-After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of

DEPARTMENT OF PETROLEUM ENGINEERING

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organisation

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission: Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- ➤ Understand historical background of the constitution making and its importance for building a democratic India.
- ➤ Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- > Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission.

www.firstRanker.gom Engineerwy.w.FirstRanken.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		\mathbf{L}	T	P	C
1 Tear - 11 Semester		3	0	0	3
MATHEMATICS - II (Linear algebra and Numerical Methods)					

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Eliminationmethod – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

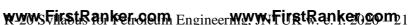
Unit – II: Cayley–Hamilton theorem and Quadratic forms:

(10hrs)

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

(8 hrs)


Introduction—Bisection method—Secant method — Method of false position—Iteration method — Newton-Raphson method (One variable and simultaneous Equations) — Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

(10 hrs)

Introduction— Errors in polynomial interpolation — Finite differences— Forward differences—Backward differences—Central differences — Relations between operators — Newton's forward and backward formulae for interpolation — Interpolation with unequal intervals — Lagrange's interpolation formula—Newton's divide difference formula.

DEPARTMENT OF PETROLEUM ENGINEERING

UNIT - V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule- Solution of initial value problems by Taylor's series- Picard's method of successive approximations—Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- 1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.

Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

www.FirstRanker.com

www.FirstRanker.gom Engineerwy.w.FirstRanker.gom_1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	C		
		3	0	0	3		
ENGINEERING PHYSICS							

Unit-I: Wave Optics 12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications -Colors in thin films- Newton's Rings-Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits(Qualitative) - Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- ➤ **Identify** engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- ➤ Illustrate the concept of polarization of light and its applications (L2)
- ➤ Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

10hrs

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion –Lasing action- Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle-Numerical Aperture-Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- ➤ Understand the basic concepts of LASER light Sources (L2)
- ➤ **Apply** the concepts to learn the types of lasers (L3)
- ➤ **Identifies** the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- ➤ **Identify** the applications of optical fibers in various fields (L2)

UNIT III: Engineering Materials

8hrs

DEPARTMENT OF PETROLEUM ENGINEERING

Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field-Clausius- Mossotti equation- Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of

magnetic materials: Dia, para, Ferro, antiferro & Ferrimagnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- ➤ Summarize various types of polarization of dielectrics (L2)
- ➤ Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- ➤ Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- ➤ **Apply** the concept of magnetism to magnetic devices (L3)

Unit-IV: Acoustics and Ultrasonics

10hrs

Acoustics: Introduction – requirements of acoustically good hall– Reverberation – Reverberation time– Sabine's formula (Derivation using growth and decay method) - Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedial measures.

Ultrasonics: Introduction - Properties - Production by magnetostriction and piezoelectric methods - Detection - Acoustic grating - Non Destructive Testing - pulse echo system through transmission and reflection modes - Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- ➤ Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- ➤ **Identify** the use of ultrasonics in different fields (L3)

DEPARTMENT OF PETROLEUM ENGINEERING

Unit-V: Crystallography and X-ray diffraction

8hrs

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattice – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods.

Unit Outcomes:

The students will be able to

- ➤ Classify various crystal systems (L2)
- ➤ **Identify** different planes in the crystal structure (L3)
- ➤ Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- ➤ **Apply** powder method to measure the crystallinity of a solid (L4)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering physics D.K. Battacharya and Poonam Tandon, Oxford University press.
- 3. Engineering Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons
- 2. Engineering Physics M.R.Srinivasan, New Age Publications
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	С		
1 Tear - 11 Semester		3	0	0	3		
ENIGINEERING MECHANICS							

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes, resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

UNIT - I

Objectives: The students are to be exposed to the concepts of force and friction, direction and its application.

Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems.

Friction: Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction

UNIT II

Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

Equilibrium of Systems of Forces: Free Body Diagrams, , Lami's Theorm, Equations of Equilibrium of Coplanar Systems, Graphical method for the equilibrium, Triangle law of forces, converse of the law of polygon of forces condition of equilibrium, Equations of Equilibrium for Spatial System of forces, Numerical examples on spatial system of forces using vector approach, Analysis of plane trusses.

UNIT - III

Objectives: The students are to be exposed to concepts of centre of gravity. The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.

Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity: Centre of gravity of simple body (from basic principles), centre of gravity of composite bodies, Pappus theorems.

DEPARTMENT OF PETROLEUM ENGINEERING

Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. **Mass Moment of Inertia:** Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

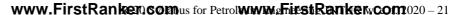
UNIT - IV

Objectives: The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Rectilinear and Curvilinear motion of a particle: Kinematics and Kinetics- Work Energy method and applications to particle motion- Impulse momentum method.

UNIT - V

Objectives: The students are to be exposed to rigid motion kinematics and kinetics


Rigid body Motion: Kinematics and kinetics of translation, Rotation about fixed axis and plane motion, Work Energy method and Impulse momentum method.

Text Book:

1. Engg. Mechanics - S.Timoshenko & D.H.Young., 4th Edn - , Mc Graw Hill publications.

Course outcomes:

- 1. The student should be able to draw free body diagrams for FBDs for particles and rigid bodies in plane and space and problems to solve the unknown forces, orientations and geometric parameters.
- 2. He should be able to determine centroid for lines, areas and center of gravity for volumes and their composites.
- 3. He should be able to determine area and mass movement of inertia for composite sections
- 4. He should be able to analyze motion of particles and rigid bodies and apply the principles of motion, work energy and impulse momentum.

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		\mathbf{L}	T	P	С
1 Tear - 11 Semester		3	0	0	3
EL	ELEMENTS OF MECHNICAL ENGINEEIRNG				•

Learning Objectives:

• The content of this course shall provide the student the basic concepts of various mechanical systems and exposes the student to a wide range of equipment and their utility in a practical situation. It shall provide the fundamental principles of materials, fuels, Steam, I.C. Engines, compressors, hydraulic machines and transmission systems that usually exist in any process plant.

UNIT-I:

Stresses and strains: kinds of – stress-strains, elasticity and plasticity, Hooks law, stress –strain diagrams, modules of elasticity, Poisson's ratio, linear and volumetric strain, relation between E, N, and K, bars of uniform strength, compound bars and temperature stresses.

UNIT-II:

Types of supports – loads – Shear force and bending moment for cantilever and simply supported beams without overhanging for all types of loads.

UNIT-III:

Thin cylindrical shells: stress in cylindrical shells due to internal pressures, circumferential stress, longitudinal stress, design of thin cylindrical shells, spherical shells, change in dimension of the shell due to internal pressure, change in volume of the shell due to internal pressure.

Thick Cylinders: Lame's equation- cylinders subjected to inside and outside pressures columns and Struts.

UNIT-IV:

Steam boilers: Classification of boilers, essentialities of boilers, selection of different types of boilers, study of boilers, boiler mountings and accessories.

Internal combustion engines: classification of IC engines, basic engine components and nomenclature, working principle of engines, Four strokes and two stroke petrol and diesel engines, comparison of CI and SI engines, comparison of four stroke and two stroke engines, simple problems such as indicated power, brake power, friction power, specific fuel consumption, brake thermal efficiency, indicated thermal efficiency and mechanical efficiency.

UNIT-V:

Transmission systems: Belts –Ropes and chain: belt and rope drives, velocity ratio, slip, length of belt, open belt and cross belt drives, ratio of friction tensions, centrifugal tension in a belt, power transmitted by belts and ropes, initial tensions in the belt, simple problems.

DEPARTMENT OF PETROLEUM ENGINEERING

Outcomes:

After completing the course, the student shall be able to determine:

- The stress/strain of a mechanical component subjected to loading.
- The performance of components like Boiler, I.C. Engine, Compressor, Steam/Hydraulic turbine, Belt, Rope and Gear.
- The type of mechanical component suitable for the required power transmission.

Text Books:

- 1. Strength of Materials and Mechanics of Structures, B.C.Punmia, Standard Publications and distributions, 9 th Edition, 1991.
- 2. Thermal Engineering, Ballaney, P.L., Khanna Publishers, 2003.
- 3. Elements of Mechanical Engineering, A.R.Asrani, S.M.Bhatt and P.K.Shah, B.S. Publs.
- 4. Elements of Mechanical Engineering, M.L.Mathur, F.S.Metha &R. P.Tiwari Jain Brothers Publs., 2009.

Reference Book:

Theory of Machines, S.S. Rattan, Tata McGraw Hil., 2004 & 2009.

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	L T	P	C		
		3	0	0	3		
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING							

Preamble:

This course covers the topics related to analysis of various electrical circuits, operation of various electrical machines and electronic components to perform well in their respective fields.

Learning Objectives:

- To learn the basic principles of electrical circuital law's and analysis of networks.
- To understand principle of operation and construction details of DC machines.
- To understand principle of operation and construction details of transformers, alternator and 3-Phase induction motor.
- To study operation of PN junction diode, half wave, full wave rectifiers and OP-AMPs.
- To learn operation of PNP and NPN transistors and various amplifiers.

Unit - I

Electrical Circuits

Basic definitions – types of network elements – Ohm's Law – Kirchhoff's Laws – inductive networks – capacitive networks – series – parallel circuits – star-delta and delta-star transformations.- Numerical Problems.

Unit - II

DC Machines

Principle of operation of DC generator – EMF equation – types of DC machines – torque equation characteristics of DC motors – applications – three point starter – speed control methods of DC motor – Swinburne's Test-Brake test on DC shunt motor-Numerical problems.

Unit - III

AC Machines:

Transformers

Principle of operation and construction of single phase transformers – EMF equation – Losses – OC & SC tests – efficiency and regulation-Numerical Problems.

AC Rotating Machines

Principle of operation and construction of alternators – types of alternators Regulation of alternator by synchronous impedance method – principle of operation of synchronous motor – principle of operation of 3-Phase induction motor – slip-torque characteristics – efficiency – applications-

Numerical Problems. www.FirstRanker.com

DEPARTMENT OF PETROLEUM ENGINEERING

Unit IV

Rectifiers & Linear ICs

PN junction diodes – diode applications (half wave and bridge rectifiers). Characteristics of operation amplifiers (OP-AMP) – application of OP-AMPs (inverting, non-inverting, integrator and differentiator)-Numerical Problems.

Unit V

Transistors

PNP and NPN junction transistor, transistor as an amplifier—frequency response of CE amplifier—Basic concepts of feedback amplifier-Numerical problems.

Learning Outcomes:

The student should be able to:


- Analyse various electrical networks.
- Understand operation of DC generators,3-point starter and DC machine testing by Swinburne's Test and Brake test.
- Analyse performance of single-phase transformer and acquire proper knowledge and working of 3-phase alternator and 3-phase induction motors.
- Analyse operation of half wave, full wave bridge rectifiers and OP-AMPs.
- Understanding operations of CE amplifier and basic concept of feedback amplifier.

Text Books:

- 1. Electrical Technology by Surinder Pal Bali, Pearson Publications.
- 2. Electronic Devices and Circuits by R.L. Boylestad and Louis Nashelsky, 9th edition, PEI/PHI 2006.

Reference Books:

- 1. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor &Francis Group
- 2. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications
- 3. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition
- 4. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition
- 5. Industrial Electronics by G.K. Mittal, PHI

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	C			
		0	0	3	1.5			
ENGINEERING WORKSHOP & IT WORKSHOP LAB								

Course Objective:

To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be done from each trade.

ENGINEERING WORKSHOP:

Trade:

1. Carpentry 1. T-Lap Joint

2. Cross Lap Joint3. Dovetail Joint

4. Mortise and Tenon Joint

2. Fitting 1. Vee Fit

2. Square Fit3. Half Round Fit

4. Dovetail Fit

3. Black Smithy 1. Round rod to Square

2. S-Hook

3. Round Rod to Flat Ring

4. Round Rod to Square headed bolt

4. House Wiring 1. Parallel / Series Connection of three bulbs

2. Stair Case wiring

3. Florescent Lamp Fitting

4. Measurement of Earth Resistance

5. Tin Smithy 1. Taper Tray

2. Square Box without lid

3. Open Scoop

4. Funnel

DEPARTMENT OF PETROLEUM ENGINEERING

IT WORKSHOP:

- 1. **MATLAB**
- 2. LATEX (Optional)
- 3. Sensors & Actuators (Any Two)
 - a. To study the temperature resistance & Voltage characteristics of the thermistor.
 - b. To study the characteristics of the pressure cell with respect to bridge voltage.
 - c. To study the response of distance versus voltage & Resistance in Light Dependent Resistors (LDR).
 - d. To study the response of distance versus voltage in photodiode & phototransistor.
 - e. Speed control of DC motor, DC Servo motor & DC Stepper motor
 - f. Circuit development using different relay
- 4. Make use of "Assembly Level Coding" or "Embedded C Coding to execute the any TWO experiments from the area of Microcontroller
 - a. Program for blinking LEDs (converge and diverge without overlapping) at any GPIO pins of Microcontroller
 - b. Program for interfacing nxn LED matrix and displaying various patterns Microcontroller
 - c. Program To Display Counter Of 0 To 9999 On Seven Segment Display
 - d. Program for interfacing 16x2 LCD with Microcontroller
 - e. Program To Control The Operation Of Relay And Buzzer
 - f. Program of analog to digital converter for microcontroller
 - g. Program of Real Time Control (RTC)
 - h. Program To Control The Operation Of Stepper Motor
 - i. Program To Control The Operation Of DC Motor
 - j. Program To Control The Operation Of Servo Motor
 - k. Program for displaying hello world message
- 5. Make use of "Ladder Logic Programming" to execute the any TWO experiments from the area of Programmable Logic Control (PLC)
 - a. Design a PLC ladder diagram to construct an alarm system which operates as follows

If one input is on, nothing happens

If any 2 inputs are on, red light turns on

If any 3 inputs are on, an alarm sirens sound

DEPARTMENT OF PETROLEUM ENGINEERING

And if all the inputs are on then the fire department is to be notified.

- A conveyor is supposed to have exactly 45 parts on it. You have three indicating lights b. to indicate the conveyor count status: less than 45, yellow: exactly 45, green: and more than 45, red. The count of parts on the conveyor is set at 45 each morning by an actual count of parts. There are two sensors on the conveyor, one is actuated by parts entering the conveyor, and the other is actuated by parts leaving. Design a PLC program to carry out this process.
- In certain process control application when the count reaches 25, a paint spray is to run c. for 40 seconds. Design, construct, and test PLC circuits for this process.
- d. Design and implement ladder logic to interface analog sensor with PLC.
- Design and Implement ladder logic algorithm for a Car Parking System using Sensors e.

Resources Required:

- 1. Sensors
- W.F.IrsiRanker.com a) Temperature
- b) LDR
- c) Load Cell
- d) Piezoelectric
- e) Strain Gauge
- f) Pressure
- g) Proximity
- 2. Actuators
- a) DC Motor
- b) Servo Motor
- c) Stepper Motor
- d) Relays
- 3. Microcontroller development board with IDE
- 4. Any PLC programming software like Rexroth, Allen Bradly, Siemens, Omron etc.

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	С
		0	0	3	1.5
	ENGINEERING PHYSICS LAB				

(Any 10 of the following listed experiments)

List of Engineering Physics Experiments

- 1. Laser: Determination of wavelength using diffraction grating.
- 2. Young's modulus of given material by Strain gauge method.
- 3. Study of variation of magnetic field along the axis of a current carrying circular coil by Stewart & Gee's method.
- 4. Determination of ultrasonic velocity in given liquid (Acoustic grating).
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum).
- 9. Determination of numerical aperture and acceptance angle of an optical fiber.
- 10. Determination of thickness of thin object by wedge method.
- 11. Determination of radius of curvature of given plano convex lens by Newton's rings.
- 12. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 13. Determination of dispersive power of the prism.
- 14. Sonometer: Verification of laws of string.
- 15. Measurement of magnetic susceptibility by Kundt's tube method.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		L	T	P	С	
		0	0	3	1.5	
BASIC ENGINEERING (MECHANICAL & ELECTRICAL) LAB						

Learning Objectives:

- To predetermine the efficiency of dc shunt machine using Swinburne's test.
- To predetermine the efficiency and regulation of 1-phase transformer with O.C and S.C tests.
- To obtain performance characteristics of DC shunt motor &3-phase induction motor.
- To find out regulation of an alternator with synchronous impedance method.
- To control speed of dc shunt motor using Armature voltage and Field flux control methods.

•

Section A: Electrical Engineering:

The following experiments are required to be conducted as compulsory experiments:

- 1. Swinburne's test on D.C. Shunt machine (predetermination of efficiency of a given D.C. shunt machine working as motor and generator).
- 2. OC and SC tests on single phase transformer (predetermination of efficiency and regulation at given power factors).
- 3. Brake test on 3-phase Induction motor (determination of performance characteristics)
- 4. Regulation of alternator by Synchronous impedance method.
- 5. Speed control of D.C. Shunt motor by
 - a) Armature Voltage control b) Field flux control method
- 6. Brake test on D.C. Shunt Motor.

Section B: Mechanical Engineering: Any SIX experiments from each section

Learning Objectives:

• To impart practical exposure on the performance evaluation methods of various mechanical components like, I. C. Engine, Hydraulic turbine, hydraulic pump, Air compressor etc. and also understand the various processes that can be performed on a lathe machine.

List of Experiments:

- 1. Draw the valve timing diagram of a 4-stroke diesel engine and port timing diagram of a 2-stroke petrol engine.
- 2. Perform load test on a 4-stroke C.I. Engine and draw the performance curves.
- 3. Pattern design and making for one casting drawing.
- 4. Taper turning and thread cutting on a Lathe machine.
- 5. Performance on an Impulse/Reaction Hydraulic Turbine.
- 6. Performance of Centrifugal/Reciprocating Pump.
- 7. Find the volumetric efficiency, isothermal efficiency of an Air compressor.

DEPARTMENT OF PETROLEUM ENGINEERING

Outcomes:

The student will be able to predict the performance of several mechanical components and operate a lathe machine to produce the required job work.

Learning Outcomes:

After the completion of the course the student should be able to:

- Compute the efficiency of DC shunt machine without actual loading of the machine.
- Estimate the efficiency and regulation at different load conditions and power factors for single phase transformer with OC and SC tests.
- Analyse the performance characteristics and to determine efficiency of DC shunt motor &3-Phase induction motor.
- Pre-determine the regulation of an alternator by synchronous impedance method.
- Control the speed of dc shunt motor using Armature voltage and Field flux control methods.

MMM.Filest.Rainker.com

DEPARTMENT OF PETROLEUM ENGINEERING

I Year - II Semester		\mathbf{L}	T	P	C
1 Year - 11 Semester		2	0	0	0
PRO	OFESSIONAL ETHICS & HUMAN VALUES				

Course Objectives:

- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values and Loyalty
- To appreciate the rights of others
- To create awareness on assessment of safety and risk

Course outcomes:

Students will be able to:

- Identify and analyze an ethical issue in the subject matter under investigation or in a relevant field
- Identify the multiple ethical interests at stake in a real-world situation or practice
- Articulate what makes a particular course of action ethically defensible
- Assess their own ethical values and the social context of problems
- Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human subjects
- Demonstrate knowledge of ethical values in non-classroom activities, such as service learning, internships, and field work
- Integrate, synthesize, and apply knowledge of ethical dilemmas and resolutions in academic settings, including focused and interdisciplinary research.

UNIT I

Human Values: Morals, Values and Ethics-Integrity-Work Ethic-Service learning – Civic Virtue – Respect for others –Living Peacefully –Caring –Sharing –Honesty -Courage-Cooperation–Commitment – Empathy –Self Confidence Character –Spirituality.

Learning outcomes:

- 1. Learn about morals, values & work ethics.
- 2. Learn to respect others and develop civic virtue.
- 3. Develop commitment
- 4. Learn how to live peacefully

UNIT II

Engineering Ethics: Senses of 'Engineering Ethics-Variety of moral issued –Types of inquiry –Moral dilemmas –Moral autonomy –Kohlberg's theory-Gilligan's theory-Consensus and controversy – Models of professional roles-Theories about right action-Self-interest -Customs and religion –Uses of Ethical theories –Valuing time –Cooperation –Commitment.

Learning outcomes:

- 1. Learn about the ethical responsibilities of the engineers.
- 2. Create awareness about the customs and religions.
- 3. Learn time management
- 4. Learn about the different professional roles.

DEPARTMENT OF PETROLEUM ENGINEERING

UNIT III

Engineering as Social Experimentation: Engineering As Social Experimentation –Framing the problem –Determining the facts –Codes of Ethics –Clarifying Concepts –Application issues – Common Ground -General Principles –Utilitarian thinking respect for persons.

Learning outcomes:

- 1. Demonstrate knowledge to become a social experimenter.
- 2. Provide depth knowledge on framing of the problem and determining the facts.
- 3. Provide depth knowledge on codes of ethics.
- 4. Develop utilitarian thinking

UNIT IV

Engineers Responsibility for Safety and Risk: Safety and risk –Assessment of safety and risk –Risk benefit analysis and reducing risk-Safety and the Engineer-Designing for the safety-Intellectual Property rights (IPR).

Learning outcomes:

- 1. Create awareness about safety, risk & risk benefit analysis.
- 2. Engineer's design practices for providing safety.
- 3. Provide knowledge on intellectual property rights.

UINIT V

Global Issues: Globalization –Cross-culture issues-Environmental Ethics –Computer Ethics – Computers as the instrument of Unethical behavior –Computers as the object of Unethical acts – Autonomous Computers-Computer codes of Ethics –Weapons Development -Ethics and Research – Analyzing Ethical Problems in research.

Learning outcomes:

- 1. Develop knowledge about global issues.
- 2. Create awareness on computer and environmental ethics
- 3. Analyze ethical problems in research.
- 4. Give a picture on weapons development.

Text Books:

- 1) "Engineering Ethics includes Human Values" by M.Govindarajan, S.Natarajan and, V.S.Senthil Kumar-PHI Learning Pvt. Ltd-2009
- 2) "Engineering Ethics" by Harris, Pritchard and Rabins, CENGAGE Learning, India Edition, 2009.
- 3) "Ethics in Engineering" by Mike W. Martin and Roland Schinzinger –Tata McGraw-Hill–2003.
- 4) "Professional Ethics and Morals" by Prof.A.R.Aryasri, DharanikotaSuyodhana-Maruthi Publications.
- 5) "Professional Ethics and Human Values" by A.Alavudeen, R.Kalil Rahman and M.Jayakumaran-LaxmiPublications.
- 6) "Professional Ethics and Human Values" by Prof.D.R.Kiran-
- 7) "Indian Culture, Values and Professional Ethics" by PSR Murthy-BS Publication.